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Motivations and open questions

* Possible benefits:

« Higher bunch intensity with longer bunches
« Mitigate electron cloud and heating
 Allows for bunch length leveling

» Disadvantages (?):
* Reduced synchrotron tune: TMCI?
 Are long bunches compatibles with 400MHz crab cavities?
« Larger luminous region: consequences?

« Can we achieve similar or better luminosity performances with 200MHz
system?

— First estimates presented at RLIUP workshop (R. Tomas “HL-LHC
alternatives”) rather encouraging
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Beam parameters

HL-LHC baseline 200MHz
N [10™ p/bunch] 2.2 2.56
€ [um] 2.5 3.0
Minimum [3* [m] 0.15 0.15
LR Separation [0] 12 12
a_[m] 0.0755 0.126 / 0.14 (double RF)
Q 2.0e-3 8.8e-4
Virtual L [10%* cm™.s™] 1.83 1.37 /1.17

— 200MHz longitudinal parameters based on calculations by E. Shaposhnikova with 6MV.
Bunch lengths are for 200MHz only (Gaussian) or 200MHz+400MHz (flat)

— Both cases assume 400MHz crab cavities: clear degradation of the virtual luminosity
for longer bunches (RF curvature + hourglass) but more protons to “burn”: what are
the consequence for integrated luminosity?

— Beam-beam parameter scales with Np/e: no changes (assuming perfect CC)
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Electron cloud and heating

— Heat load from electron cloud as a function

of maximum SEY

— Clear benefits from longer bunches: may
help in case of limitations at 25ns bunch spacing

Power loss as a function of bunch length for an upgraded MKI
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 Beam induced heating:
— factor ~5 gain in the MKI
— factor ~2 gain in the beam screens

— Very little difference between Gaussian
and flat profile




TMCI

* For the case of LHC the TMCI threshold is dominated by the tune shift of mode 0 (See
E. Metral et al. “Collimator-driven impedance”).

AQS, L sz :475(Et/e@
0, S N e

— The threshold is proportional to Q_and o_ for 200MHz we have:
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T o, 390077] — Calculations using the new HL-LHC
1 EE—— —  impedance model (See N. Mounet "Transverse
031 | impedance in the HL-LHC era”, Daresbury)
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— Chromaticity,damper and double RF should
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Do we “need” the BBLR wires?
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* Very simple approach:

— Lumped LR, same separation in all
LR and perfect crab cavities

— Footprint is not the whole story...

— But it looks like we will be dominated by
the head-on during the whole fill: are LR

really an issue if we level with *?
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— The LR beam-beam tune shift scales with

N/d? (d separation in o)

— The separation at the LR is set to 120 using
nominal parameters (not leveled)

— With 3* leveling the separation is much
larger when the intensity is the highest
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Luminosity performance with 400MHz CC

» For simplicity consider only * leveling — bunch length could be used to increase the leveling

time and performance
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— Luminosity leveled at 5.1e34 to get a pile-up of 140

— 200MHz only performs better than the baseline (higher bunch intensity), small

degradation for flat profile
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Crab cavity frequency — what can we gain?
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Luminosity performance
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— A reduction of the CC
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Pile-up density

* Recent interest to minimize pile-up density. A new scheme, “crab kissing”, has been
developed to reduce this quantity (see S. Fartoukh and A. Valishey, this workshop)
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W peak = 2 with p_=140 and R the luminosity reduction factor
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— Can we profit from the increased bunch length by lowering the CC frequency?
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— With 320MHz CC and flat profile we could keep o below 1.0 during the whole fill
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5.2

Fill evolution and pile-up leveling
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— The pile-up density is maximum when
B* reaches a minimum

— Pile-up density leveling is possible
without significant loss in integrated
Luminosity

— Leveling the pile-up density increases
the fill length

Time [h] 4 Time6[h1 .
Flat Flat + PU level

f.. [MHZ] 400 320 200 400 320 200
L/y [fb] 257.8 264.8 272.4 254.7 258.9 268.2

Fill [h] 9.1 9.8 10.0 9.5 10.0 11.0

M [mm] 1.15 1.0 0.8 1.0 0.8 0.65

B 0.48 0.57 0.68 0.48 0.57 0.68
0. [M] 0.07 0.08 0.092 0.07 0.08 0.092
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Bunch length leveling
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— Use bunch length leveling once 3* has reached a minimum (Gaussian approximation)
— Reduction of luminous region at the end of fills — increased pile-up density

— CC frequency has small impact on peak values due to the reduction of bunch length. The
average pile-up density behavior is however significantly improved

— Better than the nominal 270fb™ can be achieved in all cases
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Implication of lower CC frequency

* The voltage scales with 1/f to compensate for the same crossing angle. The size of the
cavity will also increase due to to the reduced frequency unless compactness is improved
— design more challenging, problems with integration?

 The crossing angle scales with 1/B"* — for example the 30.0/7.5 cm optics would cover for
the loss in compensation at constant voltage (larger 3 could be considered at the expense of

some luminosity)
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— Example of the 320MHz CC with
200MHz only, no bunch length leveling

— Slightly better performance with flat
beams

— Sharper peak in pile-up density:
Leveling will have smaller effect on
overall performance

— In case integration and voltage are an
issue this could be an option to reduce
the required voltage (number of cavities?)
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Can we gain with 400MHz main RF system?
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— Use “long” bunch length of 10cm
— Very little gain in luminosity

— Could gain ~10% in pile-up density with
320MHz

— Maximum pile-up density similar to
200MHz (weaker hourglass) but average
is higher: difficult to level

i i ‘ Timeelh] i i Time [h]
12.6cm + Np = 2.56e11 (for comparison) 10cm
f.. [MHZ] 400 320 400 320 200
Ly [fo] 264.4 268.8 257.2 259.8 262.6
Fill [h] 9.8 10.0 8.8 9.1 9.3
Moo [mm™] 1.11 0.99 1.12 1.04 0.96
B* e 0.53 0.59 0.56 0.59 0.63
o [m] 0.065 0.072 0.06 0.063 0.068
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Summary

* Longer bunches would mitigate electron cloud and heating from impedance

* Luminosity performances are similar or better than nominal depending on the scenario (flat or
Gaussian)

« In order to fully profit from the increased bunch length one can reduce the crab cavity
frequency:

« Slightly better luminosity performance
* Reduction of pile-up density and efficient pile-up leveling with little loss in performance
» With 400MHz main RF very small gain

« Performance can be further improved to the nominal 270fb"/year or better using bunch
length leveling: long fills and higher maximum pile-up density

» Open questions:
 Integration could be an issue, larger cavities, higher voltage — flat beams required??
 The TMCI threshold is reduced by a factor 1.5 (smaller synchrotron tune). More detailed studies required

« To what extend do we need the BBLR compensation? Simple calculations seem to indicate that with 3*
leveling the LR tune shift is strongly mitigated: done for round beam, flat beams scenario needs to be
checked
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