6th LHC crab cavity workshop - CERN

Impact of a 200MHz RF system

S. White, O. Dominguez and R. Tomas

Thanks to B. Salvant, R. Calaga, E. Jensen, N. Mounet and E. Shaposhnikova

Motivations and open questions

• Possible benefits:

- Higher bunch intensity with longer bunches
- Mitigate electron cloud and heating
- Allows for bunch length leveling
- Disadvantages (?):
 - Reduced synchrotron tune: TMCI?
 - Are long bunches compatibles with 400MHz crab cavities?
 - Larger luminous region: consequences?
- Can we achieve similar or better luminosity performances with 200MHz system?

 \rightarrow First estimates presented at RLIUP workshop (*R. Tomas "HL-LHC alternatives"*) rather encouraging

Beam parameters

	HL-LHC baseline	200MHz
N _p [10 ¹¹ p/bunch]	2.2	2.56
ε [μ m]	2.5	3.0
Minimum β* [m]	0.15	0.15
LR Separation [σ]	12	12
σ_{s} [m]	0.0755	0.126 / 0.14 (double RF)
Q _s	2.0e-3	8.8e-4
Virtual L [10 ³⁵ cm ⁻² .s ⁻¹]	1.83	1.37 / 1.17

 \rightarrow 200MHz longitudinal parameters based on calculations by E. Shaposhnikova with 6MV. Bunch lengths are for 200MHz only (Gaussian) or 200MHz+400MHz (flat)

 \rightarrow Both cases assume 400MHz crab cavities: clear degradation of the virtual luminosity for longer bunches (RF curvature + hourglass) but more protons to "burn": what are the consequence for integrated luminosity?

 \rightarrow Beam-beam parameter scales with $N_{_{D}}/\epsilon$: no changes (assuming perfect CC)

Electron cloud and heating

 \rightarrow Heat load from electron cloud as a function of maximum SEY

 \rightarrow Clear benefits from longer bunches: may help in case of limitations at 25ns bunch spacing

- Beam induced heating:
- \rightarrow factor ~5 gain in the MKI
- \rightarrow factor ~2 gain in the beam screens
- \rightarrow Very little difference between Gaussian and flat profile

TMCI

• For the case of LHC the TMCI threshold is dominated by the tune shift of mode 0 (See *E. Metral et al. "Collimator-driven impedance"*):

→ The threshold is proportional to Q_s and σ_{s_s} for 200MHz we have: $Q_s(400) / Q_s(200) \times \sigma_s(400) / \sigma_s(200) = 1.36$

→ Calculations using the new HL-LHC impedance model (See *N. Mounet "Transverse impedance in the HL-LHC era", Daresbury*)

\rightarrow In reality the degradation is ~1.5: for eseen intensity barely below threshold

 \rightarrow Chromaticity,damper and double RF should help, consider alternative material for collimators?

\rightarrow So far not a show stopper: more detailed studies required!

Do we "need" the BBLR wires?

- Very simple approach:
- \rightarrow Lumped LR, same separation in all LR and perfect crab cavities
- \rightarrow Footprint is not the whole story...

 \rightarrow But it looks like we will be dominated by the head-on during the whole fill: are LR really an issue if we level with β^* ?

 \rightarrow The LR beam-beam tune shift scales with N/d² (d separation in $\sigma)$

 \rightarrow The separation at the LR is set to 12σ using nominal parameters (not leveled)

 \rightarrow With β^* leveling the separation is much larger when the intensity is the highest

Luminosity performance with 400MHz CC

- For simplicity consider only β^* leveling – bunch length could be used to increase the leveling time and performance

 \rightarrow Luminosity leveled at 5.1e34 to get a pile-up of 140

\rightarrow 200MHz only performs better than the baseline (higher bunch intensity), small degradation for flat profile

Crab cavity frequency – what can we gain?

 \rightarrow Dependency of virtual luminosity on CC frequency for flat profile

 \rightarrow Loss in performance due to longer bunches could be recovered by decreasing the frequency

 \rightarrow Substantial RF curvature with longer bunches

 \rightarrow Reduces virtual luminosity and performance reach

S. White - 6th LHC crab cavity workshop - CERN

Luminosity performance

\rightarrow A reduction of the CC frequency by 80MHz would allow to achieve better than design performance

 \rightarrow Represents a gain of only ~3%

 \rightarrow 200MHz CC represents a more significant gain but design looks difficult (size,voltage)

 \rightarrow Bunch length leveling not considered

	Gaussian			Flat		
f _{cc} [MHz]	400	320	200	400	320	200
L/y [fb ⁻¹]	264.4	268.8	273.4	257.8	264.8	272.4
Fill [h]	9.8	10.0	11.0	9.1	9.8	10.0
t _{level} [h]	8.1	8.8	9.6	7.1	8.1	9.5
β_{max}^{*}	0.53	0.59	0.68	0.48	0.57	0.68
σ _{Lumi} [m]	0.065	0.072	0.083	0.07	0.08	0.092

Pile-up density

• Recent interest to minimize pile-up density. A new scheme, "crab kissing", has been developed to reduce this quantity (see S. Fartoukh and A. Valishev, this workshop)

 $\mu_{peak} = \frac{\mu_{tot}}{R(\sigma_s) \sqrt{\pi} \sigma_s}$

with $\mu_{_{tot}}\text{=}140$ and R the luminosity reduction factor

 \rightarrow With 320MHz CC and flat profile we could keep $\mu_{_{\text{peak}}}$ below 1.0 during the whole fill

S. White - 6th LHC crab cavity workshop - CERN

Fill evolution and pile-up leveling

 \rightarrow The pile-up density is maximum when β^* reaches a minimum

→ Pile-up density leveling is possible without significant loss in integrated Luminosity

 \rightarrow Leveling the pile-up density increases the fill length

	Flat			Flat + PU level		
f _{cc} [MHz]	400	320	200	400	320	200
L/y [fb⁻¹]	257.8	264.8	272.4	254.7	258.9	268.2
Fill [h]	9.1	9.8	10.0	9.5	10.0	11.0
µ _{peak} [mm⁻¹]	1.15	1.0	0.8	1.0	0.8	0.65
β_{max}^{*}	0.48	0.57	0.68	0.48	0.57	0.68
σ _{Lumi} [m]	0.07	0.08	0.092	0.07	0.08	0.092

Bunch length leveling

f _{cc} [MHz]	400	320	200
L/y [fb ⁻¹]	276.4	277.4	278.1
Fill [h]	11.5	11.6	11.8
µ _{peak} [mm⁻¹]	1.28	1.2	1.15
β_{max}^{*}	0.53	0.59	0.68
σ _{Lumi} [m]	0.065	0.072	0.083

 \rightarrow Use bunch length leveling once β^* has reached a minimum (Gaussian approximation)

 \rightarrow Reduction of luminous region at the end of fills \rightarrow increased pile-up density

 \rightarrow CC frequency has small impact on peak values due to the reduction of bunch length. The average pile-up density behavior is however significantly improved

\rightarrow Better than the nominal 270fb⁻¹ can be achieved in all cases

Implication of lower CC frequency

- The voltage scales with 1/f to compensate for the same crossing angle. The size of the cavity will also increase due to to the reduced frequency unless compactness is improved → design more challenging, problems with integration?
- The crossing angle scales with $1/\beta^{1/2} \rightarrow$ for example the 30.0/7.5 cm optics would cover for the loss in compensation at constant voltage (larger β could be considered at the expense of some luminosity)

 \rightarrow Example of the 320MHz CC with 200MHz only, no bunch length leveling

 \rightarrow Slightly better performance with flat beams

→ Sharper peak in pile-up density: Leveling will have smaller effect on overall performance

 \rightarrow In case integration and voltage are an issue this could be an option to reduce the required voltage (number of cavities?)

Can we gain with 400MHz main RF system?

- \rightarrow Use "long" bunch length of 10cm
- \rightarrow Very little gain in luminosity
- \rightarrow Could gain ~10% in pile-up density with 320MHz

 \rightarrow Maximum pile-up density similar to 200MHz (weaker hourglass) but average is higher: **difficult to level**

	12.6cm + Np = 2.56e11 (for comparison)			10cm		
f _{cc} [MHz]	400	320	200	400	320	200
L/y [fb ⁻¹]	264.4	268.8	273.4	257.2	259.8	262.6
Fill [h]	9.8	10.0	11.0	8.8	9.1	9.3
μ _{peak} [mm⁻¹]	1.11	0.99	0.82	1.12	1.04	0.96
β_{max}^{*}	0.53	0.59	0.68	0.56	0.59	0.63
σ _{Lumi} [m]	0.065	0.072	0.083	0.06	0.063	0.068

Summary

- Longer bunches would mitigate electron cloud and heating from impedance
- Luminosity performances are similar or better than nominal depending on the scenario (flat or Gaussian)
- In order to fully profit from the increased bunch length one can reduce the crab cavity frequency:
 - Slightly better luminosity performance
 - Reduction of pile-up density and efficient pile-up leveling with little loss in performance
 - With 400MHz main RF very small gain
- Performance can be further improved to the nominal 270fb⁻¹/year or better using bunch length leveling: long fills and higher maximum pile-up density
- Open questions:
 - Integration could be an issue, larger cavities, higher voltage → flat beams required??
 - The TMCI threshold is reduced by a factor 1.5 (smaller synchrotron tune). More detailed studies required
 - To what extend do we need the BBLR compensation? Simple calculations seem to indicate that with β* leveling the LR tune shift is strongly mitigated: done for round beam, flat beams scenario needs to be checked