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Outline

* LHC Machine Protection System today

* Challenges for Machine Protection in view of
HL-LHC and crab cavities

* New ultra fast failures due to crab cavities
* Possible mitigation strategies

* Conclusions
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LHC Failure scenarios and their mitigation

* Three classes of failures considered for LHC protection

 Ultra Fast failures (single beam passage during e.g.
beam transfer, injection,...): passive protection with
collimators and absorbers

* Fast failures (few LHC turns following beam losses,
certain fast powering failures,...): active protection
with BLMs and dedicated protection systems

 ‘Slow’ failures (powering failures, feedback, RF,..):
Protection through equipment monitoring, ...
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Machine Protection Architecture
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Cryogenics—>

General Emergency Stop<—>
Uninterruptible Supplies€—>

ecember 2013

Control System

Power
Interlock
Controllers

Radio Frequency System—>
Essential Controllers—
Auxiliary Controllers—>

Warm Magnets—>

Beam Television—>
Control Room—>
Collimation System—>
Experiments—>

Vacuum System—>
Access System—>

Beam Position Monitor—>
Beam Lifetime Monitor—

Fast Magnet Current Changes—>

Beam Loss Monitors (Aperture)—>

Beam Loss Monitors (Arc)—>
Software Interlock System—>

Injection Systems<&>

T

Beam
Interlock

System

I

&Beam Interlock System —>| Beam
Dumping
Access System—> | gystem
Timing

— Post Mortem—>
System

Safe Machine Parameters

magnel

ting the
oxtracted baam

Septum magnst

M-V kicker
lor painting
the beam

‘l— - About 700 m

B

Bear
block

y dump

-

M. Zerlauth



Failure detection time @ LHC today

CERN Control Centre |

Safe Machine Parameters (others)

Access System I

Warm Magnet Interlock Controllers |

Experiment Magnets i

Beam Television |

Safe Machine Parameters (Beam Presence Flag)
Collimation System

Experiment Moveable Devices i

Vacuum System i

Powering Interlock Controllers

Transverse Feedback |

Fast Magpet Current Change Monitors |

Beam Lifetime .Vlonitor?
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Machine Protection Response time

fault / dangerous
situation occurs

Beam Interlock Beam Dumping Beam Abort
System informed of System informed of begins, aligned
fault condition fault condition with abort gap

Beam Abort
completed

\/ DETECT / COMMUNICATE \,\'\\(’HR()\ISP/ ABOR’] /

t0 40 us t| <100 us tz <90 us t3 90 us t4
L J1\ L )

~ ~ ~

User System Process Beam Interlock System process Beam Dump System process

* Current MPS architecture cannot protect against failures
where damage potential is reached within <= 3 turns

* Todays fastest failure is powering failure of nc separation

dipole D1 (>10 turns before damage)
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Protection Challenges for HL-LHC
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* Re-visit damage studies in view of HL-LHC beam parameters.
* New failure scenarios: due to proposed optics changes and new
equipment e.g. crab cavities.
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Failure classifications of crab cavities

Slow/fast (external) failures
* Power cut
* Cryogenic failures
* Mechanical changes (tuner problem)

Timescales > 15 ms.
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New ultra fast failures due to Crab Cavities

e Little experience with ultra-fast
CC failures - KEKB case suggests
possibility of single-turn failures
(true magnet quench?!)

* (Worst case) tracking simulations

predict orbit distortion of 1.5¢" g
. . . o—e oOne out of six
within the first turn (1.7c after 3 5 | Lo threeoutorsi
S 8
turns) 3
g
. . . r M f . B ]
* Orbit distortion modulated by [3- : Vi "
tron tune. : VR /
* e ~ & “\t v
3 CCs/IP and beam, 3.3 MV/module, 3 T R— %0
Turn

«i' High . . A
@'tﬁﬂ”“‘”‘ instantaneous drop of in single CC

L LHC-CC13, 6t LHC Crab Cavity Workshop 09 December 2013 M. Zerlauth




———————————————— e —

Expected energy lost due to 1.5c beam shift

e Measurement in LHC showed beams with

overpopulated tails (2% of beam outside 40) : |~ /N
[F. Burkart, CERN Thesis 2012 046] ;;:1-" '-3:;:_1
\\
10— . B —
s ' L Tracking studies show that
5 0l S o>~ ] ~1/3 of this beam is lost
i m _____ — ‘8‘@{3\(5'8'\”” P~ within the first 3 turns
E L | —  ovmopuad T\_\ (see previous talk)
& 107! ““‘\‘H
?10-3 4e-5 (28klJ) \, ............... Potentially > 2MJ of beam
g ~. 1 impacting on collimators
2107 .| = above (current)
P — : . 5- ? damage limit

Position of primary collimators (&)

@ Courtesy: DWollmann
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Possible mitigation strategies 1/2

. LHC-CC13,6t LHC CrabiCavity:Workshop 09 December 2013

‘Passive’ protection through more and weaker

crab cavities per side of IP

Avoid correlated failures

(mechanical/cryo/electrical separation) — ==

Compensation with fast LLRF control —

Partial depletion of transverse beam tails (1

outside of primary collimators) ——

 Hollow electron-lens, tune modulation,
excitation of halo particles with AC dipol

e

New crab-kissing
schemes may need 4
CC with max 6.6 MV =>»
double kick expected.

Integration?!

See next talk.

.50

Reduced detection
time budget and
redundancy in BLMs
(depends on halo).

e,...

CREN

Effectiveness in LHC to
be proven
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Possible mitigation strategies 2/2

—

* Improvement of MPS architecture
* Direct dump links from CCs to IR6

e Accept (more) asynchronous dumps with All come with
risk of local damage é potential decrease of
safety/availability

* Additional disposable absorbers
 More abort gaps?!

* |nvestigate use of fast failure detection
mechanisms as redundancy to LLRF
* RF field monitor probe 3 | High reliability
* Diamond beam loss detectors method required.
e Head-tail monitors
* Power transmission through input coupler

High ;
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Towards integration of CCs in MPS

e Determine realistic worst-case failure scenarios and time-scales
of (chosen) crab-cavity design during SM18 and SPS tests

* SPS test as first occasion to validate (new) failure detection

mechanisms

- Measure transverse beam e
tails with 25ns (2015) ————

ECA4( 35m)

..............

* Revisit damage studies R . g,
with above input and final e | —
optics to derive protection = ’ &

requirements Ny & i /

W s st @ Courtesy: A.Macpherson
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Conclusion

* Multi-fold redundancy for detection of critical failures has proven

vital for safe LHC operation during runl.

* New ultra-fast failure modes expected due to crab cavities
* In combination with overpopulated tails this cannot be safely protected today

» Mitigation methods (halo depletion) may have knock on effect for detection of
other failures via beam losses

* (Urgently) need experimental confirmation of CC’s worst case
failure scenarios for development of functional requirements to

machine protection backbone
» Active protection will require complex combination of LLRF,

redundant failure detection, halo depletion + interlocking ->
Detrimental to dependability of overall system & performance!
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Machine Protection during SPS test

* To avoid LHC extraction (firing of e
kicker) CC out position must be 100 12 Errachon o sicier
interlocked with TT40 extraction g b '
e Beam position vs beam loaded $ Z’Zi _
power (extraction bump, orbit ’ .
oscillations after injection,...) e

Beamline Distance [m]

* Interlocking in SIS only at end of N LI
cycle

12 0pm

e Requires CC internal protection
(+ current measurement on

.............

Aperture [mm]

correctors?) connected to SPS BIS -““"*-'--'-.'.E'__'_"a.;;;a'é;;.;;;u;}'.';'t;u;;}Jj “‘iéa;;;;n'"'n""aaa;r;""'E"" |
* Detailed loss studies as for LHC I
elgnhl " Courtesy: A.Macpherson
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CCs in the SPS

rab-cavity

T H
I A
oo PP
[ I |
| L ety monitr 1
HT Monitor &2

Closed Orbit
e LHC beam: 450 GeV, Cavity Voltage: 3 MV

e Observe: Closed orbit transverse position at 6
900 phase advance from CC

e Global scheme in deflecting mode: ~1mm
offset, no amplitude growth.

——
I

HT Monitor #1

Head Tail: see R. Steinhagen 4th LHC CC workshop

* Head Tail 250 ,
e LHC beam: 450 GeV, Cavity Voltage: 3 MV. m_; Sj,f;f.“m
* Observe: transverse beam centroids at SPS = Crehng

150

HeadTail monitor
e Crabbing Mode: Expect broadening of 100
head-tail centroids

e Deflecting Mode: No significant change in

head-tail centroids 719 o3 00 03 Lo

Transverse Head centroid [mm]
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SPS Extraction Interlock - BIS
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Beam Interlock System

Example for Beam 2

. Bl BIC |
(Duplicated for Beam 1) 5L sr | [BIC CIBG
BIC 6L AN
4R ] \ DET DET

/ -1 ~""71 — _» Beam-2 Permit A
I B N B A
BIC 1"
Beam-2 Permit 4L IR5 B
Loop B CMs IRE

(clockwise) IR4 Beam 4B ;
RF \ i
Dump :

» Beam-Z Permit B

Beam-2 Permit B :f I

Loop A 3R |
(anti-clockwise) (. IR3 IRT -
| 11 momentum Betatron || |
Manager (CIBM) BiC] || I| Gleaning Clearing
bl B

BIC

g

/ 8L
. BlC/
J 8R
Beam-1 |\ fﬁcam-?
from SPS | ffrom SPS Generator (CIBG)
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