

CRYOGENICS OPERATIONS 2008

Organized by CERN

Industrial contributions to the maintenance of CERN helium cryoplants

F. FERRAND & F. BARACCO

On behalf of ALLS maintenance team

Contents

- Cryogenic maintenance overview
- Focus 1: Develop predictive maintenance Vibration analysis
- <u>Focus 2:</u> Develop reporting tools Mobile devices for instrumentation
- Focus 3: Spare parts selection

Cryogenic maintenance overview: Scope of work

- 5 Local Control rooms + 1 Central Control Centre
- 23 main cryogenic installations @4.5K
- 12 Magnet Test Bench
- 81 screw compressors and high voltage motors (160kW to 1,8MW)
- 22 medium and high pressure compressors (45 to 600kW)
- 300 vacuum pumps
- 100 gas turbines & cold compressors
- 1'000 cryogenic valves for refrigeration units
- 120 large GHe vessels
- 30 large LN2 vessels
- 65'000 I/O signals treated by industrial control
- 5'000 instrumentation materials
- 3'000 pressure safety valves

Cryogenics Operations 2008, CERN, Geneva, Switzerland

Cryogenic maintenance overview : Yearly schedule

Cryogenic maintenance overview : Internal Vs External

Cryogenic maintenance overview : Contractor team organization

Cryogenic maintenance overview : Industrial contributions

Not so far away Present Future... Equipment list consolidation CMMS Arborescence **Criticity study Create maintenance DB Organization Develop Reporting tools** Spare parts selection **Spare parts Deploy CMMS** Spare parts procurement Store centralization project **Improve** practices **Methods Erection &** Cryogenic Large scale cryogenic operation Commissioning test RUN for LHC and Experiments Develop maintenance plan Work Orders system **Develop predictive methods Preventive** maintenance **Field work Curative maintenance** Implement KPI **Expertise Increase reliability** Support major Overhauling **Increase** availability Develop plant follow up **Cost optimization**

Contents

- Cryogenic maintenance overview
- Focus 1: Develop predictive maintenance Vibration analysis
- <u>Focus 2:</u> Develop reporting tools Mobile devices for instrumentation
- Focus 3: Spare parts selection

Focus 1: vibration analysis

Scope of work

- » Screw compressors \rightarrow Power above 250kW
 - LHC accelerator: 63 compressors all considered as critical
 - LHC Experiments: 10 compressors all considered as critical
 - Labs & testing areas: 8 compressors
- » Proximity piping vibration level measurement

Measurement methodology

- » Manual measurement with mobile spectrometer
- » Monthly measurement basis
- » Specific campaigns for oil pumps and large vacuum equipments

Focus 1: vibration analysis

• Level measurement → Indicators according to ISO 10816-3

Zones de sévérité

D	Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine
С	Machines with vibrations in this zone are normally considered unsatisfactory for long term continuous operation. Generally the machine may be operated for a limited period in this condition until a suitable opportunity arises for
В	Machines with vibrations in this zone are normally considered acceptable for un-restricted long term operation
Α	The vibration for newly commissionned machine should fall normally in this zone

→ 81 machines x 12 points = 972 indicators per month !!!

Focus 1: vibration analysis

General Key Point indicators ٠

Vibration status

VERY HIGH, identified vibration issue, operation of the machine 5 may result in mechanical damages, machine must be stopped HIGH, significant vibration level requiring specific follow-up and/or actions in short or medium range -> Punch list MEDIUM, acceptable vibration level, follow up of deviation in level of characteristics frequencies is necessary

CORRECT,

VERY LOW

411																								
		Installation	Date	Ni∨	eau	d'ala	rme	(de 1	à 5)	deri	nière	mes	ure	Date	Ni∨	eau	d'ala	rme	(de 1	là5)	nou	velle	mes	sure
			mesure	Cp1	Cp2	Ср3	Cp4	Cp5	Cp6	Cp7	Cp8	Cp9	СрА	mesure	Cp1	Cp2	Ср3	Cp4	Cp5	Cp6	Cp7	Cp8	Ср9	СрА
	D1.9	LHCB 1.8	03/06/2008	1	1	1			1	1				07/07/2008	1	1	1			1	1			
	F 1.0	LHCCB 1.8	03/06/2008	2	1									07/07/2008	2	1								
	D2	LHCA 2	13/05/2008	3	3	1	2	2	1	1	2			30/06/2008	3	3	3	2	2	1	1	2		
	F2	LHCCA 2	03/06/2008	3	1									30/06/2008	3	1								
		LHCB 4	15/05/2008	1	1	1			1	1				01/07/2008	1	1	1			2	3			
	DA	LHCCB 4												09/07/2008	1									
	F4	LHCA 4	15/05/2008	4	4	4	4			4	4	3	1	01/07/2008	4	3	3	4			4	4	3	3
		LHCCA 4	28/05/2008	1										09/07/2008	1									
		LHCB 6	19/05/2008	3	3	1			1	1				04/07/2008	3	3	1			1	1			
	P6	LHCCB 6	04/06/2008	1	2									08/07/2008	1	2								
		LHCA 6	22/05/2006	4	4	2	2			4	4	1	2	04/07/2008	4	4	2	2			3	4		2
		LHCCA 6	04/06/2008	1	2									08/07/2008	1	2								
		LHCB 8	14/05/2008	1	1	1			1	1				24/06/2008	1	1	1			1	1			
	P8	LHCCB 8	02/06/2008	3																				
		LHCA 8	14/05/2008	1	1	3	1	3	1	3	4			24/06/2008	1	1	3	1	3	1	3	4		
		LHCCA 8	02/06/2008	1																				

KPI under construction

Contents

- Cryogenic maintenance overview
- Focus 1: Develop predictive maintenance Vibration analysis
- Focus 2: Develop reporting tools Mobile devices for instrumentation
- Focus 3: Spare parts selection

Field technician on site

Température, pressure, 4-20mAmps signal...

sure, I...

Operators in control Rooms

Relevé des données sur la supervision

Cryogenics Operations 2008, CERN, Geneva, Switzerland

14

Etalonnag	e des transmetteurs de pre	sion	Air Liquide
P1.8-LHC	Unité 1,8K (P18) Boît	e froide	serco tringing service to 89
	Unité Echelle Tolérance P.A. mesure (%) étal	tv 50% av 100% av P.A. ap 50% ap 100% av Recopie Recopie Recopie nA) étal (mA) étal (mA) étal (mA) étal (mA) superv 0% superv superv 50% 100%	Matériels utilisés QM
	Boucle régul. (O/N) P.A (ar) 5 10 5 10 Serrage com	nexions N/A
<i>Tag</i> 1PT220	bara 0à 10 0,625		
Remarques :			
Date :	Par:		
	Boucle régul. (O/N) P.A (ar) 0.25 0.5 0.25 0.5 Serrage cons	nexions N/A
<i>Tag</i> 1PT241	bara 0à 0,5 0,25		
Remarques :			

Etalonnage des tran	smetteurs a	le pression		Ain Liqui
P1.8-LHC			s	erco bringing service
Unité 1,8K (P18)				
	Boîte froide			
Code position 4 Référence	Désignation	Fabricant	Code barre	
] 1PT220				
☐ 1PT241				
🛃 Démarrer 🛛 🔿 🔩 🕯	(x 15:25 X	Consigne :	(⊂) +* _× ∢× 15:58 🗙	
Veuillez scanner ur	ı code	12,5 bara Limite min : 11,88 mA Mesure : 50% av étal (m	Limite max : 12,12 mA A)	
Mesure Détails Tâche :		Mesure 3 Détail Etal. transi	s Tâche : metteurs pression (PT)'	
Équipement :		Équipem	ent : QSRB-18-1PT220	
Quitter Précédent	Suivant	Quitter	Précédent Suivant	
Plus		Plus		

Cryogenics Operations 2008, CERN, Geneva, Switzerland

- Duration of shut down
- Data availability in maintenance DB, almost real time
- Processus Efficience
- Reliability of information, real time value checking by the data base
- Device adapted to field work
- Good feedback from field technicians and customer

Contents

- Cryogenic maintenance overview
- Focus 1: Develop predictive maintenance Vibration analysis
- <u>Focus 2:</u> Develop reporting tools Mobile devices for instrumentation
- Focus 3: Spare parts selection

Focus 3: Spare parts selection

 Create homogeneous equipment listings, built from various suppliers worldwide → CMMS template

Criticity study → failure frequency, detection, impact

		r			
Fréquence	Fréquence panne	Détectabilité	Niveau de détection	Impact	Type de conséquence
1	Jamais		Le suivi des indicateurs statistiques permet de savoir que cette	1	Pas de conséquence ou d'impact
2	Entre 5 et 25 ans	1	piece est en defaut.	2	Production maintenue pendant 2 H
3	Entre 3 et 5 ans	2	Une alarme ou un monitoring specifique sont associees a la piece	3	Fonctionnement en mode dégradé possible pendant moins de 6 H
4	Entre 2 et 3 ans	3	l'équinement et nous normet ranidement d'identifier la nièce	4	Fonctionnement en mode dégradé* possible pendant plus de 6 H.
5	Entre 1 et 2 ans	5	Peut être trouvée dans les 2 H suivant l'alarme ou l'information de	5	Provoque un arrêt de moins d'1 H.
6	Dane l'année	4	panne ou de la défaillance.		Provoque un arrêt de plus d'1 H mais moins que 2 jours. Ici la valeur
7	Dans las 6 mais		Peut être trouvée dans les 10 H suivant l'alarme ou l'information de		de B est imprécise car un arrêt de production peut durer de 1h a 2
- /	Dans les 6 mois	5	panne ou de la défaillance.	6	jours.
8	Dans le trimestre	6	Peut être facilement trouvée lors des inspections journalières	7	Provoque un arrêt de plus de 2 jours mais moins que 3 jours.
9	Dans les 2 mois	7	Peut être difficilement trouvée lors des inspections journalières		Provoque un arrêt de plus de 3 jours, ou a des conséquences
10	Dans le mois		Peut être facilement trouvée lors des inspections mensuelles ou	8	importantes sur le fonctionnement ou la sécurité de l'installation
		8	annuelles		Il v a un arrêt de production d'une durée incertaine. Peut être lié à
			Peut etre difficilement trouve lors des inspections mensuelles ou	9	un problème de réclamation, d'assurance, de garantie ou légal
		9	annuelles Il est nécessaire que le nièse seit en défeut neur recharcher et		Il existe un problème très sévère ou un accident qui induit un arrêt
		10	li est necessaire que la pièce soit en defaut pour rechercher et localiser le problème	10	prolongé de l'installation ou de la production.

Installations similarities, cross checking of 8000 references

Budget sizing → Cost of spares Vs Cost of equipment

Ratios usuels	
Equipements mécaniques maintenanble	8%
Instrum/régul en fonction de la complexité	>10%
	_
Moteurs thermiques	18%
Turbines gaz	8%
Pompes centrifuges	10%
Compresseurs alternatifs	16%
Compresseurs centrifuges	5%
Equipements électriques moteurs et altérnateurs	5%
Tableaux de distribution	6%
Instrumentation	12%
Robinetterie	3%
Matériel de filtration	3%
Matériel électronique (calculateur) avec redondances	38%

- » Approach excludes capital spare parts: compressor and turbines
- » Ration in between 2 and 4% as a first basis

000724

Focus 3: Spare parts selection

- Management of spare parts
 - » Specification and procurement
 - » Centralised warehouse project for cryogenics cryoplants spare parts → Ongoing project to be finalized end of 2008

Thank you for your attention

F. FERRAND & F. BARACCO

Cryogenics Operations 2008, CERN, Geneva, Switzerland 22th-26th September 2008