

CRYOGENICS OPERATIONS 2008

Organized by CERN

Design status of the cryogenic system of JT60-SA: optimization of the refrigeration capacity for different operation modes

<u>Christine Hoa</u>, Frédéric Michel SBT, CEA Grenoble

1

Outline

- Cryogenic system for the tokamak JT-60SA
- Operation modes and heat loads
- Optimization of the refrigeration capacity
 - » Thermal buffer operation during day
 - » Liquid storage during night
- Perspectives and conclusions

Cryogenic system for the tokamak JT-60SA

Presentation of the tokamak JT-60SA

- » Superconductive tokamak in Naka, Japan
- » ITER Broader approach, joint project between Japan and Europe
- » CEA in charge of the cryogenic system procurement
- » D-D Plasma physics planned for 2015
- » 2008: Concept design phase

Cryogenic system for the tokamak JT-60SA

Geneva, Switzerland

Cryogenic system for the tokamak JT-60SA

Cryogenics Operations 2008, CERN, Geneva, Switzerland

Christine Hoa, 22nd-26th September 2008

Operation modes

Yearly schedule

JT-60SA Operation States		Long Term Maintenance (LTM)	Baking Operation State (BOS)	Holding Operation State (HOS)	Plasma Operation State (POS)	
Duration		>30 days	~ 7 days	Night (12 h) or WE	Day (10 h)	CRYOP08- 25/09, 15:30
Magnets	Temperature (K)	300	20	4.6	4.4	Baking scenarios studies, V.Lamaison
	TF current	OFF	OFF	OFF/ON	ON	
	EF and CS current	OFF	OFF	OFF/ON	ON	
Vacuum Vessel & Cryostat Thermal Shield Temperature (K)		300	80/120	80/100	80/100	JT-60SA will be operated 6 or 7 months / year
Vacuum Vessel	Temp (K)	300	470	313	313	
Divertor Cryopumps Temperature (K)		300	470	20-30 K regeneration	4.4	

Cryogenics Operations 2008, CERN, Geneva, Switzerland

Operation modes

• Daily schedule

7

Refrigerator Capacity of ~10 kW @4.5 K

			POS 100/3000 sec		
Temperature levels	Cryogenic subsystems	units	scenario	HOS	BOS
4,5 K	total CS coils	W	475	0	0
	total EF coils	W	635	312,5	612,5
	total TF coils	W	1444	1032,61	1837,5
	aux. Loads	W	730	730	650
	cryopump panel	W	248	0	0
	cold circulators	W	2201	1576,5	1
	cold compressor	W	734	390	0
	TOTAL 4,5 K	W	6467	4042	3101
50K	HTS Current leads flow@(50 K-300 K)	g/s	23,8	23,03	0
80 K	Thermal shields 80 K	W	31962	31890	118500
4,5 K	Equivalent refrigeration power	kW	8,1	5,8	8,2

Direct Pulsed Heat loads

Cryogenics Operations 2008, CERN, Geneva, Switzerland

9

Heat loads Pulsed heat loads: (POS: 100s plasma/3000 s) • Heat loads into the Thermal Buffer at 4.3 K 14000 -TOTAL TE WP A first smoothing -TOTAL TF Structures 13 kW 12000 in the CICC **Peak heat loads** -TOTAL CS and in the cooling TOTAL EF 10000 channels -Aux. Loads., circulators, CC 8000 Cryo-pumps P (V) -TOTAL 6000 4000 2000 0 -40 460 960 1460 1960 2460 2960 Cryogenics Operations 2008, CERN, Christine Hoa, 22nd-26th September 2008 10 t (s) Geneva, Switzerland

• Pulsed heat loads: Comparison with other tokamaks

Tokamaks	Equivalent Refrigeration Power at 4.5 K	Averaged power At 4.5 K	Peak heat loads at 4.5 K	Ratio Peak/Averaged Power	Thermal buffer size
ITER [1]	2*30 kW	37 kW (magnets)	43 kW	1.2	4*2 m ³
JT60-SA	10 kW (TBC)	6.5 kW (magnets+ cryo-pumps)	13 kW	2.2	6 m ³
K-STAR [2]	9 kW	4.7 kW	6.2 KW	1.3	6 m ³
TORE SUPRA [3]	800 W Thick casing only	100 W Thick casing only	17 kW Thick casing only	170	3*1.5 m ³

References

[1] Review of conceptual design of ITER cryoplant system, Sanmarti M., Kalinin V., Lässer R., Michel F, Murdoch D., Poncet J.-M., Roussel P., Serio L.

[2] KSTAR Tokamak helium refrigeration System design and manufacturing, Pascal Dauguet, Air Liquid.

[3] Thermal buffer made of He I at constant volume, JAGER B. ; MARDION G. B. ; CLAUDET G. ; DESMARIS M. ; Cryogenics 1985, vol. 25, no10, pp. 578-582.

- How to smooth the pulsed heat loads?
 - » Practical solution, but not economical: regulation with a heater immersed into the saturated bath.
 - Installed power for the cryoplant: peak heat loads
 - JT60-SA: 13 kW at 4.5 K
 - » Optimized solutions with a thermal buffer
 - Installed power for the cryoplant: averaged heat loads
 - JT60-SA: 6.5 kW at 4.5 K
 - Technical challenges and compromises
 - Cryodistribution: to ensure a stable operation of the refrigeration
 - Cryoplant: new developments for adapted refrigerator that can cope with mass flow rate variation?

- Baseline solution for a thermal buffer operation
- T, P variations in the thermal buffer
 - » 4.3 to 5.0 K
 - » 1.09 to 1.96 bars
- Regulation on the mass flow rate:
 - » Cold compressor speed,
 - » Control valve
 - » By-pass valve...

Cryogenics Operations 2008, CERN, Geneva, Switzerland

- Other solution for a thermal buffer operation: a refrigeration box immersed into the thermal buffer
- Advantages
 - » Decoupling of the refrigerator interface and the thermal buffer
 - Thermal buffer at constant volume
 - Regulation on a constant pressure in the refrigeration box
 - » Easier operation

Drawbacks

» Refrigeration box: a supplementary component to design and connect

Cryogenics Operations 2008, CERN, Geneva, Switzerland

Day/night operation

- » Heat loads at 4.5 K during HOS and POS are significantly different
 - 6.5 kW at Plasma Operation Scenario
 - 4.0 kW at Holding Operation Scenario
- » HOS: to store Liquid Helium into a tank using a liquefaction mode for the cryoplant
- » POS: to supply supplementary Liquid Helium from the storage to cope with higher loads, using an "economiser" mode for the cryoplant.

Christine Hoa, 22nd-26th September 2008

Day/night operation

- » Hypothesis
 - Heat loads: 6.5 kW at POS, 4.0 kW at HOS
 - The expected efficiency for the cryoplant to produce LHe:
 - 120 W needs to produce 1g/s.
 - The expected efficiency for the cryoplant to convert LHe into refrigeration power: 1g/s could give 80 W.
 - All the liquid stored during HOS is used during POS.
- » Results
 - Installed power at 4.5 K ~ 5.5 kW
 - The active liquid helium volume : 4.3 m³

Perspectives and Conclusions

Operation under pulsed heat loads

- » New challenges for the cryogenic system (cryoplant and cryodistribution)
- » Different concepts for smoothing the heat loads with a thermal buffer
- » Optimization of the refrigerator capacity:
 - Plasma Operation Scenario
 - Holding Operation Scenario

Investigations

- » Process modeling (Vincenta, HYSYS,...)
- » Experimental mock up
- » Analysis of the available cryogenic components under pulsed heat loads
- » Feedbacks from other tokamaks operations (TORA SUPRA, KSTAR...)
- » Other abnormal operation modes: disruption, fast discharge...

Thank you for your attention!

Cryogenics Operations 2008, CERN, Geneva, Switzerland

Christine Hoa, 22nd-26th September 2008