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Outline

• Cryogenic system for the tokamak 
JT 60SAJT-60SA 

• Operation modes and heat loads

• Optimization of the refrigeration 
capacitycapacity

» Thermal buffer operation during day
» Liquid storage during night» Liquid storage during night

• Perspectives and conclusions
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Cryogenic system for the tokamak JT-60SAy g y

• Presentation of the tokamak JT-60SA
» Superconductive tokamak in Naka, Japan
» ITER Broader approach, joint project between Japan pp , j p j p

and Europe
» CEA in charge of the cryogenic system procurementg y g y p
» D-D Plasma physics planned for 2015
» 2008: Concept design phasep g p
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Cryogenic system for the tokamak JT-60SAy g y
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Cryogenic system for the tokamak JT-60SA
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Operation modes

 

Baking Holding Plasma

p

• Yearly schedule
JT-60SA Operation 

States 
Long Term

Maintenance 
(LTM) 

Baking 
Operation 

State 
(BOS) 

Holding
Operation 

State 
(HOS) 

Plasma 
Operation 

State 
(POS) 

Duration >30 days ~ 7 days Night (12 h) or Day (10 h)Duration >30 days ~ 7 days WE Day (10 h)

Temperature 
(K) 300 20 4.6 4.4 

TF current OFF OFF OFF/ON ON Magnets 

CRYOP08- 25/09, 15:30
Baking scenarios studies, 

V.Lamaison

EF and CS
current OFF OFF OFF/ON ON 

Vacuum Vessel & 
Cryostat 

Thermal Shield 
T t (K)

300 80/120 80/100 80/100 JT-60SA will be operated 
6 or 7 months / yearTemperature (K) 

Vacuum 
Vessel Temp (K) 300 470 313 313 

Divertor Cryopumps 20 30 K

6 or 7 months / year

Divertor Cryopumps 
Temperature (K) 300 470 20-30 K

regeneration 4.4 
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Operation modesp

• Daily schedule
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Heat loads

• Refrigerator Capacity of ~10 kW @4.5 K

Temperature levels Cryogenic subsystems units

POS        
100/3000 sec 

scenario HOS BOS
4,5  K total CS coils W 475 0 0

total EF coils W 635 312,5 612,5
total TF coils W 1444 1032,61 1837,5
aux. Loads W 730 730 650

cryopump panel W 248 0 0
ld i l t W 2201 1576 5 1cold circulators W 2201 1576,5 1

cold compressor W 734 390 0
TOTAL 4,5 K W 6467 4042 3101

50K HTS Current leads flow@(50 K-300 K) g/s 23 8 23 03 050K HTS Current leads flow@(50 K 300 K) g/s 23,8 23,03 0

80 K Thermal shields 80 K W 31962 31890 118500

4,5  K Equivalent refrigeration power kW 8,1 5,8 8,2

Cryogenics Operations 2008, CERN, 
Geneva, Switzerland

8 Christine Hoa, 22nd-26th September 2008



Heat loads

• Direct Pulsed Heat loads 
Needs of smoothing

Pulsed Heat loads at 4,5 K
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Heat loads

Heat loads into the Thermal Buffer at 4.3 K
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Heat loads
• Pulsed heat loads: Comparison with other tokamaks 

Tokamaks Equivalent Averaged power Peak heat loads Ratio Thermal q
Refrigeration 

Power at 4.5 K

g p
At 4.5 K at 4.5 K Peak/Averaged Power buffer size 

ITER [1] 2*30 kW 37 kW  (magnets) 43 kW 1.2 4*2 m3

JT60-SA 10 kW (TBC) 6.5 kW (magnets+
cryo-pumps)

13 kW 2.2 6 m3

K-STAR 9 kW 4.7 kW 6.2 KW 1.3 6 m3

[2]

TORE 
SUPRA [3]

800 W
Thick casing only

100 W
Thick casing only

17 kW
Thick casing only

170 3*1.5 m3

g y
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Optimization of the refrigeration capacity

• Smoothing the heat loads with a 
th l b ff Extracted heat loadsthermal buffer

» Optimization of the refrigeration capacity 
for an averaged power over a 
plasma scenario (6.5 kW)

xt acted eat oads
Qrefrigerator (t)

Vb th volume of
» Stable interface with the refrigerator: 

constant mass flow rate 
» Drawbacks

• Large volume for the thermal buffer

Vbath volume of 
the saturated bath 
with a liquid
level, Pbath, Tbath

mtotal constant

with

mtotal constant

with mvap=mtotal

• Large volume for the thermal buffer
• T variations in the buffer constraint 

on the magnets
• P variations in the buffer constraints Heat loads deposited into the

mliq=(1-x)mtotal

on the cold compressor
Heat loads deposited into the 
saturated bath Qheat exchanger (t)

Cryogenics Operations 2008, CERN, 
Geneva, Switzerland

12 Christine Hoa, 22nd-26th September 2008



Heat loads

• How to smooth the pulsed heat loads?
» Practical solution but not economical: regulation with a heater immersed» Practical solution, but not economical: regulation with a heater immersed 

into the saturated bath. 
• Installed power for the cryoplant: peak heat loads 

JT60 SA 13 kW at 4 5 K• JT60-SA: 13 kW at 4.5 K
» Optimized solutions with a thermal buffer

• Installed power for the cryoplant: averaged heat loads
• JT60-SA: 6.5 kW at 4.5 K
• Technical challenges and compromises

– Cryodistribution: to ensure a stable operation of theCryodistribution: to ensure a stable operation of the 
refrigeration

– Cryoplant: new developments for adapted refrigerator that can cope with 
mass flow rate variation? 

Cryogenics Operations 2008, CERN, 
Geneva, Switzerland

13 Christine Hoa, 22nd-26th September 2008



Optimization of the refrigeration capacity

• Baseline solution for a thermal 
buffer operation

Cold Box

buffer operation
• T, P variations in the thermal 

buffer
4 3 5 0 KJT l » 4.3 to 5.0 K

» 1.09 to 1.96 bars
• Regulation on the mass flow 

P2

JT valveCC

rate: 
» Cold compressor speed, 
» Control valve 

HX2HX1

» By-pass valve…

CS
WP
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Optimization of the refrigeration capacity

• Other solution for a thermal buffer 
operation: a refrigeration box ope at o a e ge at o bo
immersed into the thermal buffer

• Advantages
» Decoupling of the refrigerator interface 

and the thermal buffer
• Thermal buffer at constant volume
• Regulation on a constant pressure in 

h f bthe refrigeration box

» Easier operation

• Drawbacks
» Refrigeration box: a supplementary 

component to design and connect
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Optimization of the refrigeration capacity

• Day/night operation
» Heat loads at 4 5 K during HOS and

 

» Heat loads at 4.5 K during HOS and 
POS are significantly different 

• 6.5 kW at Plasma Operation Scenario
• 4.0 kW at Holding Operation Scenariog p

» HOS: to store Liquid Helium into a tank 
using a liquefaction mode for the 
cryoplant 

» POS: to supply supplementary Liquid 
H li f th t t ithHelium from the storage to cope with 
higher loads, using an “economiser” 
mode for the cryoplant.

Cryogenics Operations 2008, CERN, 
Geneva, Switzerland

16 Christine Hoa, 22nd-26th September 2008



Optimization of the refrigeration capacity

• Day/night operation
» Hypothesis

• Heat loads: 6.5 kW at POS, 4.0 kW at HOS
• The expected efficiency for the cryoplant to produce LHe: p y y p p
120 W needs to produce 1g/s.
• The expected efficiency for the cryoplant to convert LHe into 

refrigeration power: 1g/s could give 80 Wrefrigeration power: 1g/s could give 80 W.
• All the liquid stored during HOS is used during POS.

» Results
• Installed power at 4.5 K ~ 5.5 kW
• The active liquid helium volume : 4.3 m3
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Perspectives and Conclusionsp

• Operation under pulsed heat loads
N h ll f th i t ( l t d di t ib ti )» New challenges for the cryogenic system (cryoplant and cryodistribution)

» Different concepts for smoothing the heat loads with a thermal buffer
» Optimization of the refrigerator capacity:

• Plasma Operation Scenario
• Holding Operation Scenario

• Investigations
» Process modeling (Vincenta, HYSYS,…)
» Experimental mock upExperimental mock up
» Analysis of the available cryogenic components under pulsed heat loads
» Feedbacks from other tokamaks operations ( TORA SUPRA, KSTAR…)
» Other abnormal operation modes: disruption fast discharge» Other abnormal operation modes: disruption, fast discharge…
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Thank you for your attention!
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