

CRYOGENICS OPERATIONS 2008

Organized by CERN

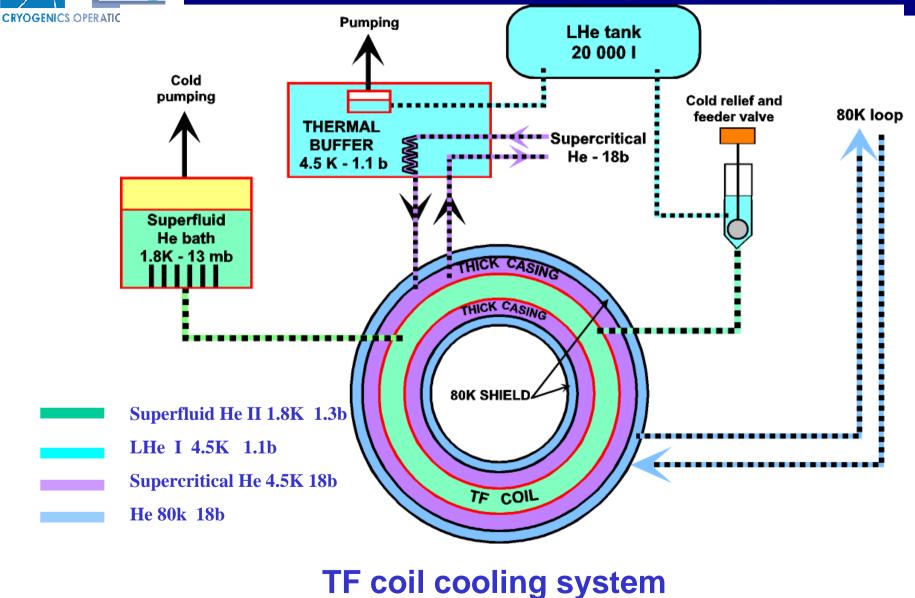
Collection of data related to the operation experience on the Tore Supra cryogenic system

Related to the European Fusion Development Agreement Task TW6-TSL-004

> **Reynaud Pascal** Commissariat à l'Energie Atomique-IRFM

Cryogenics Operations 2008, CERN, Geneva, Switzerland

OUTLINE


"News from Tore Supra"

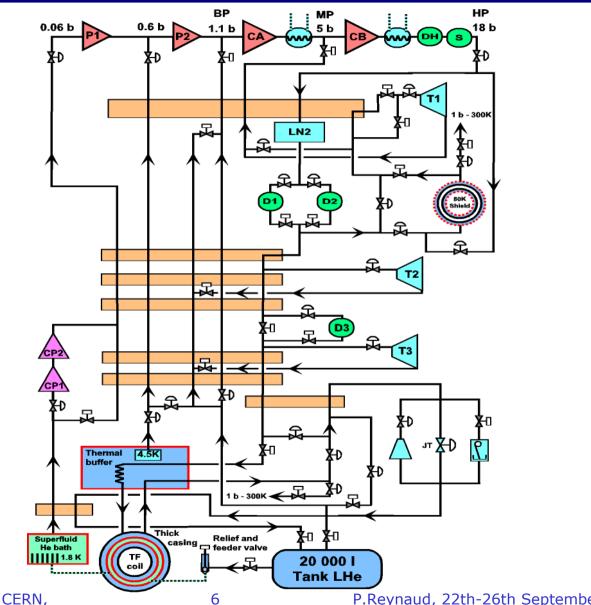
- Introduction
- **Description of the EFDA task**
- Recalls of the cryogenic system
- Data management
- Overall availability
- Remarks and conclusions

Description of the EFDA task

- Work related to an EFDA task,
- Objective: enrich a fusion specific data collection
- Refers to systems relevant to ITER project
- Deliverable 1: Water cooling system
- Deliverable 2: Toroïdal field magnet safety system
- Deliverable 3: Cryogenic system
- Duration : 1 year
- Information required per component of the system
 - Number of failures
 - Mean time between failures
 - Resulting downtime
 - Availability of the component
 - Associated maintenance

4

Cryogenics Operations 2008, CERN, Geneva, Switzerland


P.Reynaud, 22th-26th September 2008

	1.8 K				4.5		80 K		
Transient load	Heat load (kJ)	ΔT (K)	Recovery time	Heat load (kJ)	∆T - casing (K)	∆T - bath (K)	Recovery time	Heat load	
PF cycle	30	0.0 2	4 min	120	0.7	0.1	4 min	-	
Disruptions	50	0.0 4	12 min	1200	3.9	0.4	25 min	-	
Fast Safety Discharge	235	0.1 2	35 min	400	1.8	0.15	8 min	-	
Cleaning Discharge	0.2 / cycle		2 s	1.5 / cycle	0.3	0.25	2 s	-	
Static load (vessel at 120°C)	120 to 160 W		300 W				12kW		
Static load (baking at 200°C)	-			-				20 kW	
Refrigerator power	300 W			800 W + 3 g/s (C.L)			16 kW + LN ₂ (total = 30kW)		

5

Cryogenics Operations 2008, CERN, Geneva, Switzerland

P.Reynaud, 22th-26th September 2008

Main Cold components						
Turbine T1	In/out Temperature	Power	Flow rate			
AL C5-500	110/80K	16kW	110g/s			
Turbine T2	In/out Temperature	Power	Flow rate			
AL C3-500	50/30K	2.8kW	24g/s			
Turbine T3	In/out Temperature	Power	Flow rate			
AL C4-500	19/10K	2.2kW	50g/s			
Wet reciprocating engine	In/out Temperature	In/out Pressure	Flow rate			
AL/KPS model 1400	6/4.5K	18/1.2bar	10g/s			
Cold compressor PF1	Suction conditions	Compression ratio	Flow rate			
AL/S2M	10mb/4.5K	3	14g/s			
Cold compressor PF2	Suction conditions	Compression ratio 2.3	Flow rate			
AL/S2M	34mb/10K		14g/s			
Liquid storages	20000l of LHe + 2 x 50000l of LN2					

CRYOGENICS OPERATIONS 2008

Main Warm components

		-			
Compressor C1	In/out Pressure	Flow rate	Electrical power of motor		
STAL S7	1/4.5bar	101g/s	200kW		
Compressor C2	In/out Pressure	Flow rate	Electrical power of motor		
STAL S73	1/4.5bar	101g/s	200kW		
Compressor C3	In/out Pressure	Flow rate	Electrical power of motor		
STAL S51	4.5/18bar	144g/s	250kW		
Compressor C4	In/out Pressure	Flow rate	Electrical power of motor		
STAL S57	4.5/18bar	218g/s	400kW		
Oil ring pump P1	In/out Pressure	Flow rate	Electrical power of motor		
Alstom Hydro PL 160	70/600mbar	14 g/s	315kW		
Oil ring pump P2	In/out Pressure	Flow rate	Electrical power of motor		
Alstom Hydro PL 50	0.6/1bar	60g/s	132kW		
Recovery compressor C7	Pressure max	Flow rate	Electrical power of motor		
Sulzer type C5U	200 bar	10g/s	90kW		
Recovery compressor C8	Pressure max	Flow rate	Electrical power of motor		
Sulzer type C5U	200bar	10g/s	75kW		
Gas bags	160m3 + 360m3				
HP storage	Pressure max 200bars	Whole capacity : 1500kg			

PHASE 1 : Extraction of data automatically recorded

- From o Command-control system PANORAMA
- To find the stable operational modes and the transitory modes during which the component was required in service and to enter time corresponding
- To enter the time during which the component required in service was unavailable

PHASE 2 : Comparison with various sources of information

- o **PAVANE Incident database**
- From o Computerized logbooks
 - o **Operator interviews**
- To check and discriminate the real origin of the unavailability of the component, because some were rather induced by operating conditions

Data management

PHASE 3 : Treatment of data

With o Excel conversion, VB macros

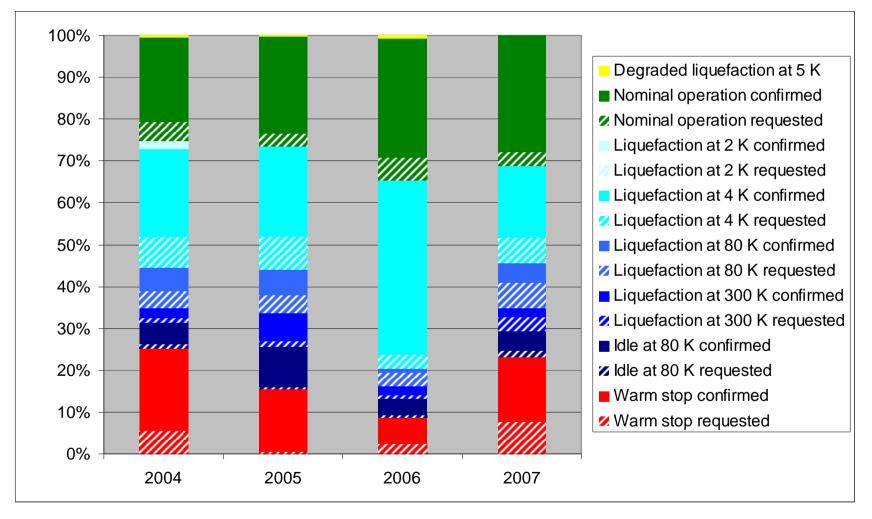
• To identify the real availability times of the component compared to the real-time of operation requested

PHASE 4 : Addition of the maintenance actions and costs

- From o Computerized logbooks
- To finalize the report
- **Task closed in August 2008**
- **Easiest years for data extraction and retrieval : 2004-2007**

This huge work highlights the availability of the cryogenic system

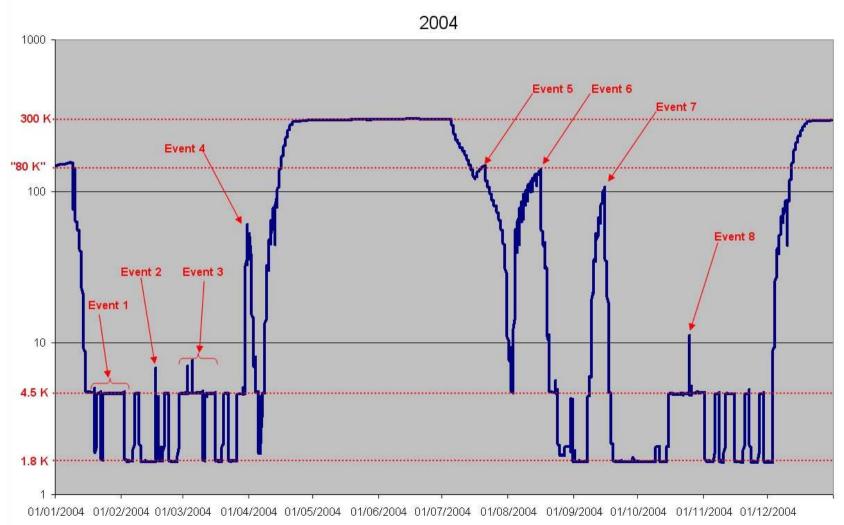
Overall availability


Time spent in the different operating modes from 2004 to 2007

	2004		20	05	200		200	
Operating mode	hours	totals	hours	totals	hours	totals	hours	totals
Warm stop confirmed	1732 h	20 %	1311 h	15 %	543 h	6 %	1342 h	15%
Idle at 80 K confirmed								
Liquefaction at 300K confirmed	222 h		577 h	7 %	192 h	2 %	192 h	2%
Liquefaction at 80 K confirmed	501 h	6 %	558 h	6 %	89 h	1 %	399 h	5 %
Liquefaction at 4 K confirmed	1841 h	21 %	1893 h	22 %	3645 h	43%	1512 h	17 %
Liquefaction at 2 K confirmed	177 h	2 %	0 h	0 %	0 h	0 %	0 h	0 %
Nominal operation confirmed	1770 h	20%	2036 h	23 %	2495 h	28 %	2445 h	28 %
Total time spent in transitions	2013 h	23 %	1518 h	17 %	1394 h	16 %	2440 h	28 %
TOTAL	8784 h	100 %	8760 h	100 %	8760 h	100 %	8760 h	100 %

Overall availability

Relative importance of the different operating modes from 2004 to 2007



Cryogenics Operations 2008, CERN, Geneva, Switzerland

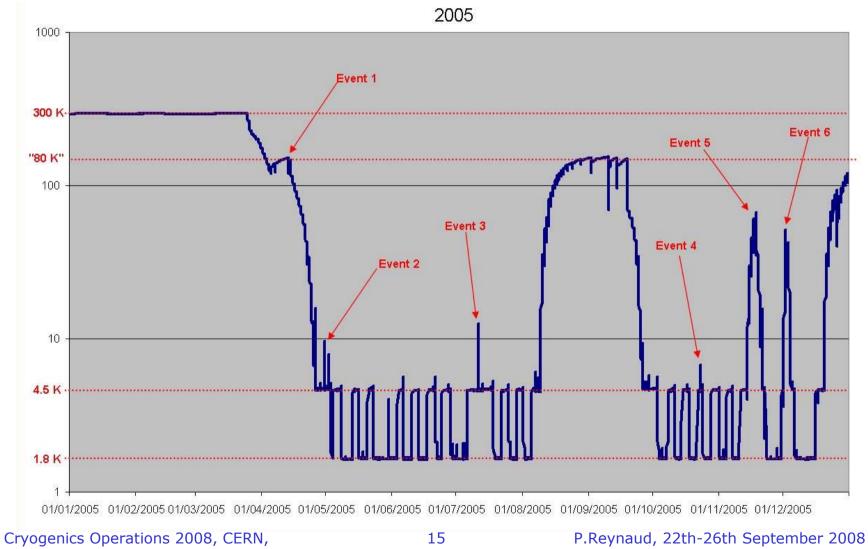
Overall availability (2004)

Toroidal magnet temperature throughout 2004

Cryogenics Operations 2008, CERN, Geneva, Switzerland

CRYOGENICS OPERATIONS 2008

Overall availability (2004)

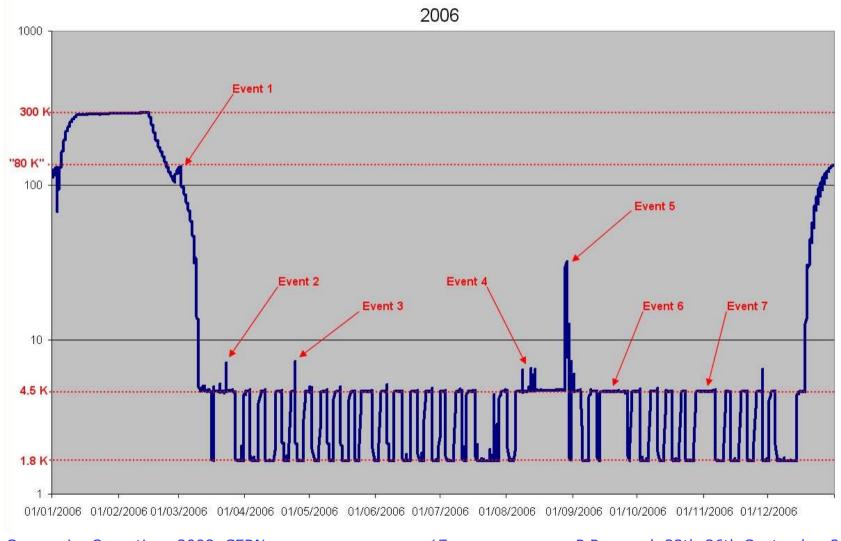

NS-2008	Dates	What happened?	Number of days lost
Event 1	2 nd half of January	Cooldown test at 2 K, toroidal magnet test at 1.8 K, then baking of the vacuum vessel at 200°C while the cryo stayed at 4.5 K until campaign start	NOT A FAILURE
Event 2	17/02/2004	Turbine replacement	1 day lost
Event 3	02/03/2004-10/03/2004	02/03/2004-10/03/2004 P1 pump electrical failure (motor and circuit breaker)	
	30/03/2004-05/04/2004	WRE failure (bearings damaged)	4 days lost
Event 4	06/04/2004-08/04/2004	Cold pumps failure (clogging of a valve of the He/He heat exchanger circuits)	3 days lost
Event 5	3 rd week of July	1 st liquefaction at 80 K, then cooldown test to 4.5 K after summer warm stop	NOT A FAILURE
Event 6	1 st week of August Cadarache 1-week closure fo summer holidays		NOT A FAILURE
Event 7	07/09/2004-17/09/2004 C3 compressor failure (bearin damaged)		8.5 days lost
Event 8	2 nd half of October	Test of the auxiliary cold box and water leak (not on the cryogenic system)	NOT A FAILURE

Cryogenics Operations 2008, CERN, Geneva, Switzerland P.Reynaud, 22th-26th September 2008

Overall availability (2005)

Toroidal magnet temperature throughout 2005

Overall availability (2005)

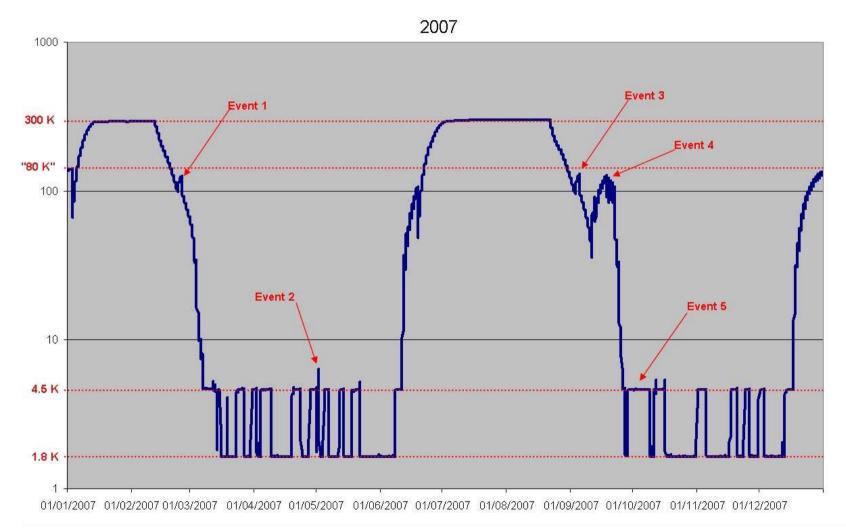

Notable events in 2005

	Dates (dd/mm/yyyy)	What happened?	Number of days lost	
Event 1	05/04/2005-13/04/2005	1 st liquefaction at 80 K	NOT A FAILURE	
Event	30/04/2005	Electrical failure	No day lost	
2	1 st week of May	Cooldown and toroidal field test at 1.8 K	NOT A FAILURE	
Event 3	01/07/2005-19/07/2005	Test of the auxiliary cold box and removal of ICRF antennas while at 4.5 K (later reinstalled in the "unplanned" maintenance period in Sept-Oct)	NOT A FAILURE	
Event 4	23/10/2005	Power supply failure due to storms	Not related to the cryogenic system	
Event 5	15/11/2005-18/11/2005	Water in oil circuits and in 1 st He/He heat exchanger	5 days lost to HUMAN ERROR	
Event 6	01/12/2005-06/12/2005	Water in 1 st He/He heat exchanger	3 days lost to HUMAN ERROR	

Overall availability (2006)

Toroidal magnet temperature throughout 2006

Overall availability (2006)


Notable events in 2006

	Dates (dd/mm/yyyy)	What happened?	Number of days lost	
Event 1	3 rd week of February	1 st liquefaction at 80 K	NOT A FAILURE	
Event 2	2 nd half of March	Cooldown and toroidal field tests at 1.8 K then 1 week at 4.5 K for baking of the vacuum vessel	NOT A FAILURE	
Event 3	24/04/2006	Cold pumps stop (compressed air supply failure)	Not related to the cryogenic system	
Event 4	2 nd week of August	Shutdown due to storms and Cadarache 1-week closure for summer holidays	Not related to the cryogenic system	
Event 5	Last week of August	Test of the auxiliary cold box, then general power supply failure on Cadarache	Not related to the cryogenic system	
Event 6	2 nd & 3 rd week of Sept.	Water leak on water cooling system	Not related to the cryogenic system	
Event 7	Last week of October	Legal holidays	NOT A FAILURE	

Overall availability (2007)

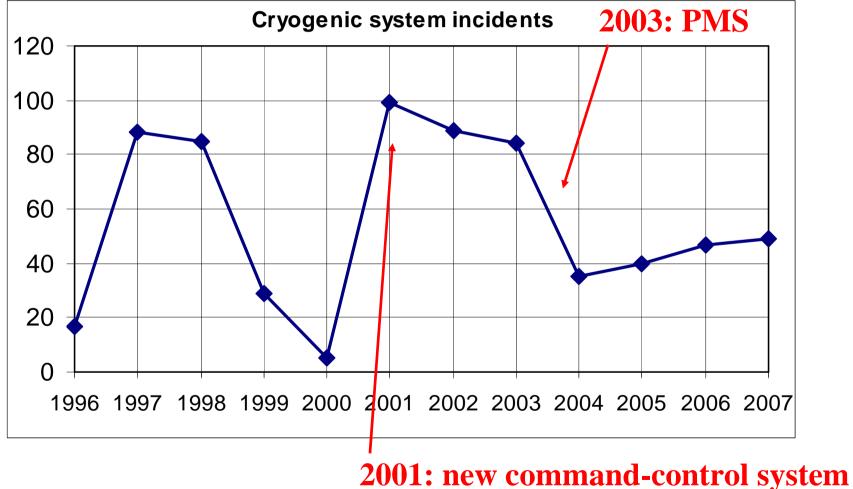
Toroidal magnet temperature throughout 2007

Overall availability (2007)

Notable events in 2007

	Dates (dd/mm/yyyy)	What happened?	Number of days lost	
Event 1	2 nd half of February	1 st liquefaction at 80 K (1 st campaign)	NOT A FAILURE	
Event 2	20/04/2007	Replacement of compressor C2 motor	1 day	
	02/05/2007	Replacement of P2 coupling	1 day	
Event 3	1 st week of September	1 st liquefaction at 80 K (2 nd campaign)	NOT A FAILURE	
Event 4	Mid-September	Tests of C3 compressor on backup power supply	NOT A FAILURE	
Event 5	End of September / beginning of October	Cooldown and toroidal test at 1.8 K then baking of the vacuum vessel at 4.5 K	NOT A FAILURE	

Overall availability


Availability relatively to the plasma experimental campaign

	2004		20	005	2006		2007	
Operating mode	hours	total	hours	total	hours	total	hours	total
Nominal operation confirmed	1770 h	20%	2036 h	23 %	2495 h	28 %	2445 h	28 %
Availability of the cryogenic system**	76.2 % (relatively to experimental campaigns)		92.9 % (relatively to experimental campaign)		100 % (relatively to experimental campaign)		97.3 % (relatively to experimental campaigns)	
Availability of the whole Tore Supra installation	53 %		54 % 76 % 80 %		76 %		%	

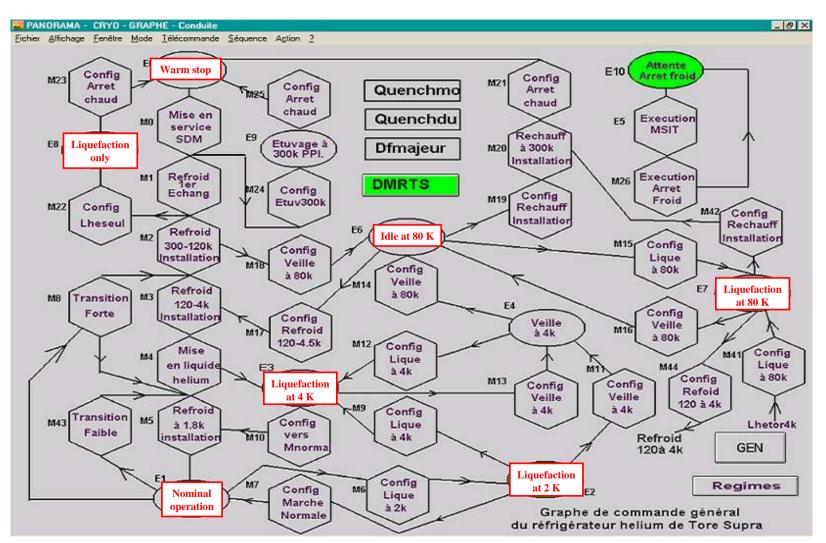
Conclusion

Number of failures per year – CRYO-PLANT PAVANE Source only

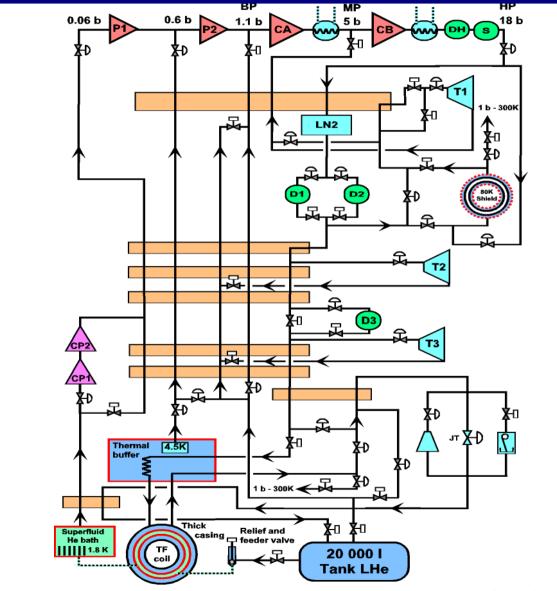
Cryogenics Operations 2008, CERN, Geneva, Switzerland

P.Reynaud, 22th-26th September 2008

Conclusion

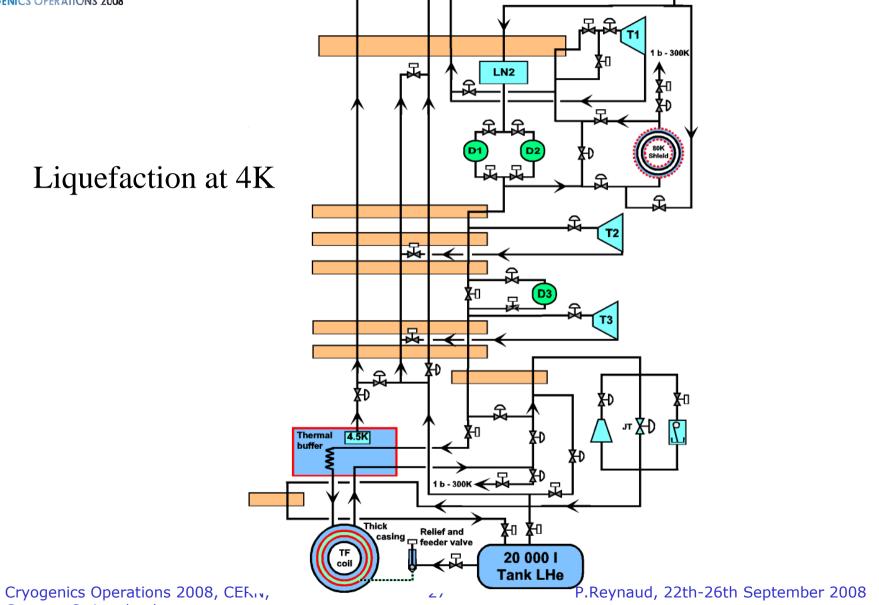

More than 20 years after its commissionning, and without any large updating, the cryogenic system of Tore Supra is operated in quasiindustrial conditions with a satisfying level of performance and availability.

Keeping a human presence on the site, performing daily inspections of the critical components and a reliable and ergonomic control-command system make possible an increase of availability during the 4 last years.



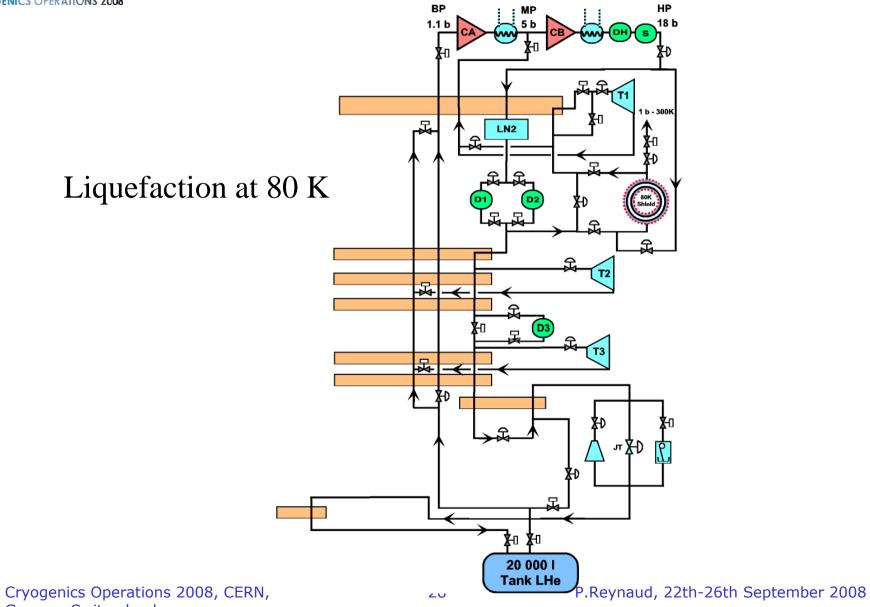
Cryogenics Operations 2008, CERN, Geneva, Switzerland

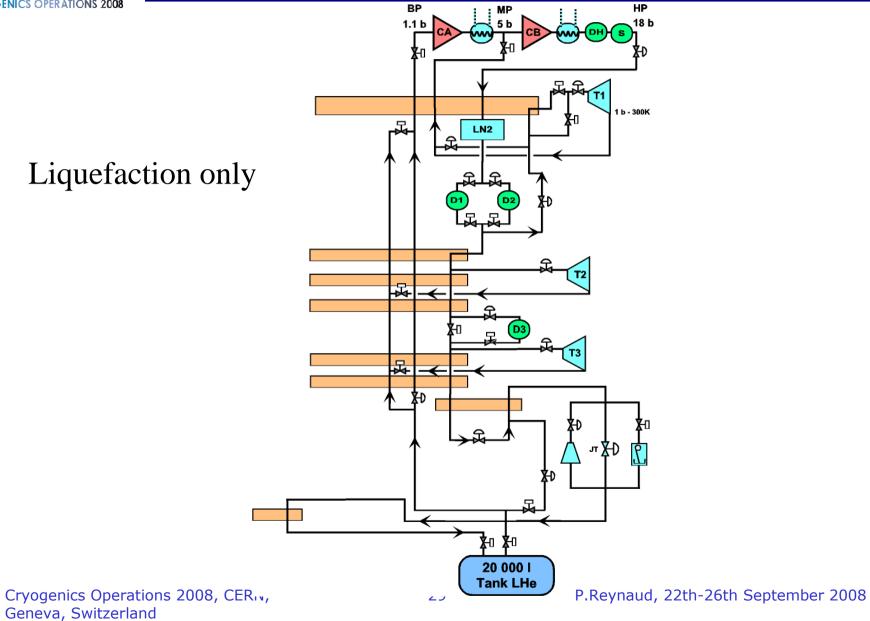
25

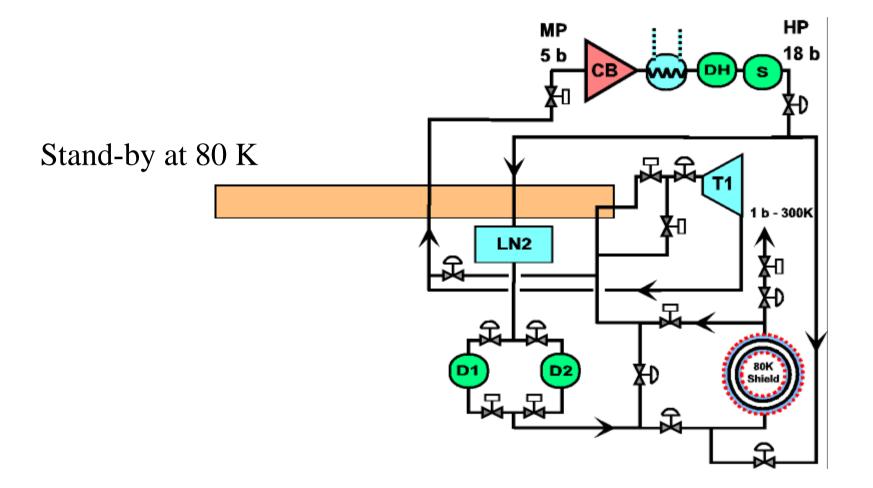


Nominal operation

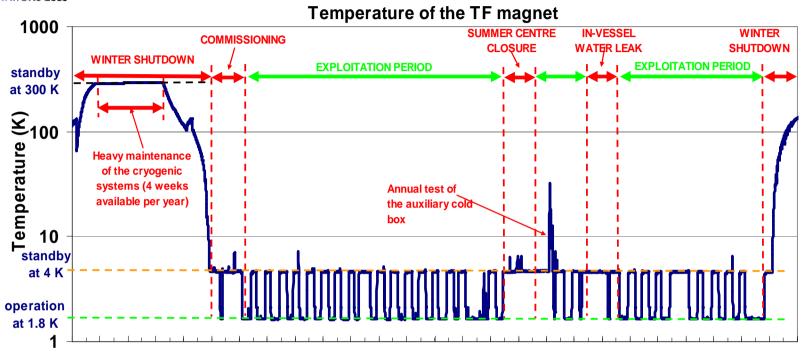
Cryogenics Operations 2008, CERN, Geneva, Switzerland


P.Reynaud, 22th-26th September 2008


Geneva, Switzerland



Geneva, Switzerland



Cryogenics Operations 2008, CERN, Geneva, Switzerland

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Heavy maintenances ~ 3 months per year Regulatory controls for Cryogenic system, CWS Power Supplies Tore Supra Configuration

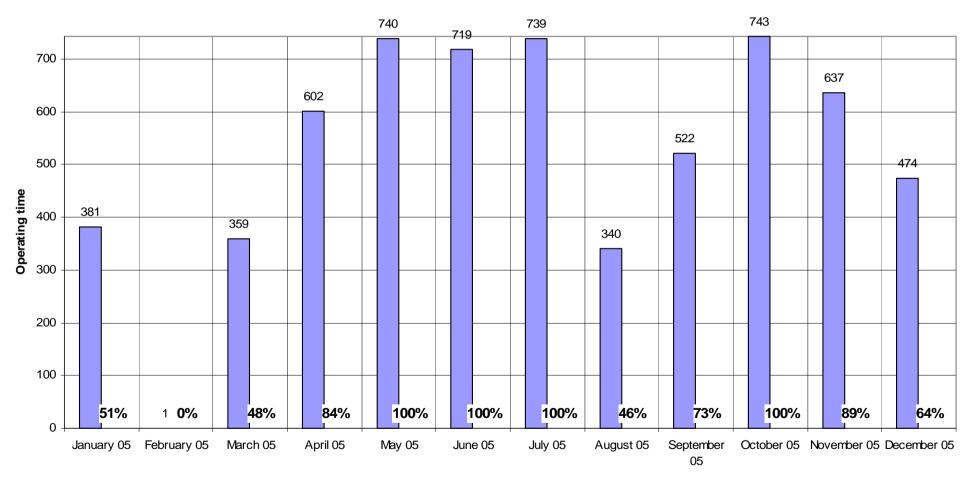
Cryogenics Operations 2008, CERN, Geneva, Switzerland week (year 2006)

Plasma Operation rhythm ~ 40 hours a week
4 days a week : TF magnet at 1.8K
3 days at 4.2K w.e. and maintenance day (Monday)

• PAVANE database: from 1996 up to now

- » Data related to tests and plasma discharges
- » Data related to failures
- » A few continuous data but mainly reports from different systems operators

• PEGASE database: from mid-2003 up to now


- » Operating parameters automatically collected from systems Command-Control
- » Continuously collected data, stocked with a 3s interval, but only retrieved from the database 5000 points at a time, for any given length of time:
 - 5000 points/year > ca. 1h45 interval
 - 5000 points/month > ca. 9min interval

Log books from the start of Tore Supra (1989) up to now

- » Data related to tests and plasma discharges
- » Data related to failures
- Incidents reports
- Maintenance reports
- Operators interviews

C1 Operating Time (2005)

Month