



## **CRYOGENICS OPERATIONS 2008**

Organized by CERN

#### The ITER Cryogenic System overview

D. Henry, M. Chalifour, V. Kalinin, L. Serio, C. Mayaux

> ITER Organization 13108 Saint Paul-lez-Durance, France

Cryogenics Operations 2008, CERN, Geneva, Switzerland

1





# Outline

- Introduction & Cryogenics schedule
- Plant operation states
- Cryogenic capacity&loads
- Layout of cryogenic system
- Cryoplant operational modes
- Requirements for cryoplant maintenance
- Conclusions



#### **ITER Core**





To prove the scientific and technological control of fusion energy

 $\begin{array}{l} P_{\underline{fusion}} &= Q_0 > 10 \\ P_{\underline{coupl}} & Design \ fusion \ power: \\ 500 \ MW^* \\ Plasma \ burn \ duration: \\ 400s^*, \ 1000s, \ 3000s \end{array}$ 

#### Cryogenic challenge:

smoothing huge variable heat loads

- Nuclear heating
- AC losses
- Cryopump regeneration







Cryogenics Operations 2008, CERN, Geneva, Switzerland

CRYOGENICS OPERATIONS 2008

D. Henry, ITER Organization, 22th-26th September 2008





|                    | 2008 | 2009 | 2010 | 2011     | 2012 | 2013     | 2014 | 2015 | 2016       | 2017 | 2018 |
|--------------------|------|------|------|----------|------|----------|------|------|------------|------|------|
|                    | 1234 | 1234 | 1234 | 1234     | 1234 | 1234     | 1234 | 1234 | 1234       | 1234 | 1234 |
| FIRST PLASMA       |      |      |      |          |      |          |      |      |            |      | •    |
| Design review      |      |      |      |          |      |          |      |      |            |      |      |
| Prototyping, tests |      |      |      | <b>♦</b> |      |          |      |      |            |      |      |
| CRYODISTRIBUTION   | J    |      |      |          |      | <b>♦</b> |      |      |            |      |      |
| Manufacturing      |      |      |      |          |      |          |      |      |            |      |      |
| Installation       |      |      |      |          |      |          |      |      | $\diamond$ |      |      |
| CRYOLINES          |      |      |      | <b></b>  |      |          |      |      |            |      |      |
| Manufacturing      |      |      |      |          |      |          |      |      |            |      |      |
| Installation       |      |      |      |          |      |          |      |      |            |      |      |
| CRYOPLANTS         |      |      |      |          |      |          |      |      |            |      |      |
| Manufacturing      |      |      |      |          |      |          |      |      |            |      |      |
| Installation       |      |      |      |          |      |          |      |      | $\diamond$ |      |      |
| COMMISSIONING      |      |      |      |          |      |          |      |      | $\diamond$ |      |      |
| OPERATION          |      |      |      |          |      |          |      |      |            |      |      |

5



## **Plant operation states**



ITER will be operated 365 days/year 24 h/day.

2 consecutive weeks plasma operation followed by 1 week break

ITER operations will be performed in 3\*8 h shifts including a 3<sup>rd</sup> silent hour shift



| Plasma campaign 16 months | WU Major Shutdown 8 months CD |
|---------------------------|-------------------------------|
| Magnet 4.3 K              | Magnet [80 K] 300 K           |
| Cryopumps 4.5 K           | Cryopumps [4.5 K] 300 K       |





| Type of loads                                                                    | <b>T(K)</b> | Average value      |  |  |  |  |  |
|----------------------------------------------------------------------------------|-------------|--------------------|--|--|--|--|--|
| Nuclear heating                                                                  |             | 3.2 kW             |  |  |  |  |  |
| Variable heat loads (AC losses, Eddy current)                                    |             | 11.4 kW            |  |  |  |  |  |
| Static heat loads including cryodistribution                                     | 13          | 8.1 kW             |  |  |  |  |  |
| SHe circulating pumps                                                            | 4.5         | 11.4 kW            |  |  |  |  |  |
| Contingency on complexity of cryoplant operation                                 |             | 5 kW               |  |  |  |  |  |
| Cryopumps system, PIS, Gyrotron&Diagnostics                                      | 4.5         | 7.5 kW + 0.06 kg/s |  |  |  |  |  |
| Helium flow for cooling HTS_CL                                                   | 50          | 0.15 kg/s          |  |  |  |  |  |
| Total LHe Plant cooling capacity: 39 kW at 4.2 K + (7.5 kW + 0.06 kg/s) at 4.5 K |             |                    |  |  |  |  |  |
| Equivalent refrigeration capacity @ 4.5 K : 65 kW                                |             |                    |  |  |  |  |  |
| Thermal shields, gravity supports and cryodistribution                           | 80          | 387 kW             |  |  |  |  |  |
| TS and baffles of cryopumps                                                      | 00          | 150 kW             |  |  |  |  |  |
| Subtotal capacity of LN2 plant including GHe purification unit                   | 00          | 633 kW + 0.15 kg/s |  |  |  |  |  |
| LN2 for LHe plants precooling                                                    | 00          | 464 kW             |  |  |  |  |  |
| Total LN2 plant equivalent refrigeration capacity @ 80 K ~ 1300 kW               |             |                    |  |  |  |  |  |



## Layout of ITER cryoplant





Cryogenics Operations 2008, CERN, Geneva, Switzerland

8



#### **Cryodistribution system option**











## **Cryopumps operation**





12

Cryogenics Operations 2008, CERN, Geneva, Switzerland

D. Henry, ITER Organization, 22th-26th September 2008



# Requirements for preventive maintenance and duty cycle



Main objective: >97% reliability and availability

### Reliability

- \* Reinforced maintenance:
  - intervals shortened
  - actions improved (FMECA)
  - additional resources
  - preventive maintenance
- \* Reinforced logistics
  - additional spare parts
  - standardization
  - specific contract

#### Availability

\* Over capacity (margin rules to be define)

\* Redundancy of utilities (air/water/vacuum pumping/power supply)

- \* Redundancy of critical sensors
- \* All comprehensive inventory of procedure
- \* Updating of documents
- \* Traceability
- \* Qualified and trained staff



#### Requirements for preventive maintenance



|     |     |     | 24 months |        |     |  |     |                          |  |  |
|-----|-----|-----|-----------|--------|-----|--|-----|--------------------------|--|--|
|     |     |     | 16 r      | nonths |     |  |     |                          |  |  |
| STM | POS | STM | POS       | STM    | POS |  | POS | STM WU LTM (8 months) CD |  |  |

| Maintenance task                                                                                                                   | Periodicity | Scheduled maintenance                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|--|--|
| <ul><li>-Warm compressors (oil level verifications, filters, inspections, etc ).</li><li>-Cold Compressors and SHe Pumps</li></ul> | 8,000 h     | Short Term Maintenance<br>(= 1 week) or<br>(< 1 week, if redundancy) |  |  |
|                                                                                                                                    | 12,000 h    | (if redundancy)                                                      |  |  |
| Calibration of the cryogenic instrumentation                                                                                       | 2 years     | Long Term Maintenance                                                |  |  |
| Cryogenic valves inspection                                                                                                        | 2 years     |                                                                      |  |  |
| Regulatory control of safety valves                                                                                                | 3 years     |                                                                      |  |  |
| Complete overhaul of the rotating machinery                                                                                        | 4 years     |                                                                      |  |  |
| Regulatory control of pressure vessels                                                                                             | 10 years    |                                                                      |  |  |

#### **Coping with 16 months plasma campaign**



## Conclusions



- The ITER cryogenic system will be the second largest cryogenic system in the world with a cooling power of 65 kW at 4.5 K and 1300 kW at 80 K
- It will distribute cryogenic power via a complex system of multipipe cryogenic transfer lines of few km and about 50 cryogenic distribution boxes
- Maintain magnets and cryopumps at nominal temperatures over a wide range of operating modes with pulsed heat loads
- Ensure high flexibility and reliability to reach 97% of availability
- Optimized maintenance schedule as much as possible
- RAMI analysis is ongoing







Cryogenics Operations 2008, CERN, Geneva, Switzerland

D. Henry, ITER Organization, 22th-26th September 2008





## Acknowledgements

This presentation was prepared as an account of work by or for the ITER Organisation. The Members of the Organisation are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation, and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement.