$b \rightarrow s \ell \ell$ exclusive decays

FPCP 2014

Patrick Owen¹ on behalf of the LHCb collaboration

27th May 2014

Imperial College London

▶ ▲ 臣 ▶ ▲ 臣 ▶

¹patrickowen22@gmail.com

Electroweak penguin decays

• $B \to K \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$ proceed dominantly through penguin and box diagrams.

- Integrate out short distance dynamics \rightarrow Wilson Coefficients:
 - C_7 electromagnetic
 - C_9 semi-leptonic vector
 - C_{10} semi-leptonic axial vector
- Observables depend on four-momentum transferred to dimuon, q^2

Overview of measurements

- Angular analyses:
 - $B \rightarrow K \mu^+ \mu^-$: [arXiv:1403.8045]
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$: [arXiv:1304.6325], [arXiv:1308.1707]
- Rate analyses:
 - $B^0 \to K^{*0} \mu^+ \mu^-$, [arXiv:1304.8045]
 - $B^+ \rightarrow K^{*+} \mu^+ \mu^-$, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^0 \mu^+ \mu^-$: [arXiv:1403.8044]
 - $B \rightarrow K^{(*)} \mu^+ \mu^-$ isospin asymmetry [arXiv:1403.8044]
- CMS [arXiv:1308.3409], ATLAS [ATLAS-CONF-2013-038], BaBar [arXiv:1204.3933], Belle [arXiv:0904.0770] and CDF [arXiv:1108.0695] also made measurements.
 - Concentrate on most precise results today (LHCb).

$B \rightarrow K \mu^+ \mu^-$ angular analysis - [arXiv:1403.8045]

The $B^+\!\to K^+\mu^+\mu^-$ angular distribution can be written as

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{l}} = \frac{3}{4} (1 - F_{\mathrm{H}})(1 - \cos^{2}\theta_{l}) + \frac{1}{2}F_{\mathrm{H}} + A_{\mathrm{FB}}\cos\theta_{l} \ ,$$

where A_{FB} is the forward-backward asymmetry and F_H is the "flat parameter".

• So far,
$$B^0_s
ightarrow \mu^+ \mu^-$$
 SM like.

- Depends on (pseudo-)scalar Wilson coefficients $C_s^{(')}$ and $C_p^{(')}$
- Rate proportional to C_s - C'_s and C_p - C'_p
- Angular observables proportional to $C_s + C'_s$ and $C_p + C'_p$
- Also, clean place to look for tensor contributions.

$B \rightarrow K \mu^+ \mu^-$ angular analysis - [arXiv:1403.8045]

- Fit mass and angles to determine A_{FB} and F_H .
- Use 3 fb⁻¹ of data.

• Angular parameterisation of background biggest systematic.

 $B^+ \rightarrow K^+ \mu^+ \mu^-$ 1D results - [arXiv:1403.8045]

- Theory based on [arXiv:1111.2558], no predictions near charmonium resonances.
- 68% uncertainties obtained using Feldman-Cousins with plug-in method.
- No evidence for scalar or tensor couplings.

 $B^+ \rightarrow K^+ \mu^+ \mu^-$ 2D results - [arXiv:1403.8045]

- 1D results with plugin method not guaranteed to cover due to unphysical region.
- 2D confidence regions provided for $B^+ \rightarrow K^+ \mu^+ \mu^-$.
- Data points available on preprint.

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

• Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^$ allows separation between C_7 , C_9 and C_{10} .

- More degrees of freedom compared to $B \rightarrow K \mu^+ \mu^-$, analysis complicated:
 - Three angles, θ_l , θ_k and ϕ .
 - If $m_{\ell} = 0$ and narrow width approximation, have 16 observables.

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular results

• Theory based on [arXiv:1105.0376].

 Most precise results found at [arXiv:1304.8045] (1 fb⁻¹), no deviations from SM predictions.

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular results [arXiv:1308.1707]

- Last summer, publish several "optimised" observables [arXiv:1202.4266] with 1 fb⁻¹.
- Designed to reduced form factor uncertainties.

• Large local deviation found in one bin of the observable P'_5 .

3. Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular results

• Global fits to data suggest reduced value of C_9 (e.g. [arXiv:1307.5683],[arXiv:1308.1501] and [arXiv:1310.2478]).

- Theoretical uncertainty of observables a hot topic.
- Need sophisticated treatment of statistical uncertainties for global fit.
 - Measurements correlated.
 - Uncertainties not Gaussian.

Branching fractions [arXiv:1403.8044]

- Using 3 fb⁻¹, measure branching fractions of:
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $B^0 \rightarrow (K^0_{\rm S} \rightarrow \pi^+\pi^-)\mu^+\mu^-$
 - $B^+ \rightarrow (K^{*+} \rightarrow K^0_{
 m S} \pi^+) \mu^+ \mu^-$

- Split data into categories depending on whether the K⁰_S daughters leave enough hits in the vertex detector (long (L) and down (D)).
- $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0_s \to \phi \mu^+ \mu^-$ branching fractions also shown use only 1 fb⁻¹ and different normalisation procedure.

Normalisation [arXiv:1403.8044]

- Crucial issue is normalisation to $B \rightarrow J/\psi K^{(*)}$ decays.
- Previous measurements of $\mathcal{B}(B \to J/\psi K^{(*)})$ assume equal production of B^+ and B^0 at $\Upsilon(4S)$.
- Instead assume $B \rightarrow J/\psi K^{(*)}$ isospin asymmetry zero (~6% effect) [arXiv:0412062].

$$\begin{split} \mathcal{B}(B^+ &\to J/\psi \, K^+) = (0.998 \pm 0.014 \pm 0.040) \times 10^{-3}, \\ \mathcal{B}(B^0 &\to J/\psi \, K^0) = (0.928 \pm 0.013 \pm 0.037) \times 10^{-3}, \\ \mathcal{B}(B^+ &\to J/\psi \, K^{*+}) = (1.431 \pm 0.027 \pm 0.090) \times 10^{-3}, \\ \mathcal{B}(B^0 &\to J/\psi \, K^{*0}) = (1.331 \pm 0.025 \pm 0.084) \times 10^{-3}, \end{split}$$

• Systematic uncertainties between isospin partners assumed to be 100% correlated.

Branching fraction results

• $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and $B^0_s \rightarrow \phi \mu^+ \mu^-$ results combinations, other LHCb results from [arXiv:1403.8044].

• Theory: [arXiv:1111.2558], [arXiv:1105.0376].

• Lattice QCD: [arXiv:1310.3207] $(B \rightarrow K\mu^+\mu^-)$ and [arXiv:1310.3887] $(B \rightarrow K^*\mu^+\mu^-)$ and $B_s^0 \rightarrow \phi\mu^+\mu^-)$.

FPCP 2014

Branching fraction summary

- All five measurements below theoretical predictions at high q^2 .
- Tends to favour small C_9 like angular results.
- Conclusion not dependent on $B \rightarrow J/\psi K^{(*)}$ assumption.

• However ..

Cold water

- Lattice predictions for B→ Kµ⁺µ⁻ missing two-loop virtual corrections to effective part of C₉.
- Taking this correction into account reduces the tension with SM.
- Large contribution from $\psi(4160)$ as well [arXiv:1307.7595].

 $\bullet \sim 20\%$ of the rate composed of resonance + interference.

Cold water

- Can we predict this theoretically?
 - In principle yes, they are dealt with an additional OPE at low recoil.
 - \bullet Assumes "quark-hadron duality" \rightarrow smooth predictions.
 - Valid if integrated over a large q^2 region.
 - \bullet Also assumes QCDF resonance structure should be the same in $e^+e^- \rightarrow {\rm hadrons}.$
 - Clearly not the case!

Isospin asymmetry of $B ightarrow K^* \mu^+ \mu^-$

- Asymmetry in charged and neutral $B \to K^{(*)}\mu^+\mu^-$ decays, defined as: $A_I = \frac{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) - \frac{\tau_0}{\tau_+}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) + \frac{\tau_0}{\tau_+}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^+\mu^-)}$
- A_I is predicted to be close to zero in the SM for both $B \to K \mu^+ \mu^$ and $B \to K^* \mu^+ \mu^-$ [arXiv:1305.4797].

• Previously seen significantly negative results for $B \rightarrow K \mu^+ \mu^-$ from LHCb [arXiv:1205.3422] and BaBar [arXiv:0807.4119].

Patrick Owen

Isospin asymmetry of $B \rightarrow K^* \mu^+ \mu^-$

• Tension reduced when updating data.

- Still mild tension at low q^2 but measurement agrees much better with SM now.
- $B \rightarrow K^* \mu^+ \mu^-$ also consistant with SM (as previously).

Summary

- Dominant SM contributions of $b \to s\ell\ell$ exclusive decays are C_7 , C_9 and C_{10} .
- $B \rightarrow K \mu^+ \mu^-$ angular analysis sensitive to scalars and tensors.
 - No evidence seen.
- Angular and branching fraction measurements tend to favour a lower value of C_9 than SM.
 - Theoretical and experimental work needed to confirm.
- Isospin asymmetry previously deviated from SM expectation.
 - Tension reduced with full 3 fb^{-1} dataset.

Backup

FPCP 2014

Patrick Owen

Exclusive electroweak penguin decays

э

イロト イポト イヨト イヨト

Selection

- Reduce combinatorial background using kinematic, geometric and particle identification (PID) information.
- Use multivariate techniques to boost sensitivity.
- Consider exclusive backgrounds and use PID/kinematics to reduce them neglible after selection.

Charmonium resonances

• $B \rightarrow J/\psi K^{(*)}$ and $B \rightarrow \psi(2S)h$ are irreducible backgrounds and are \sim 100 and 10 times more common than signal.

• Regions (a) due to FSR, (b) due to mis-reconstruction and (c) due to partially reconstructed background.