SEARCHING FOR μ → eγ WITH MEG AND MEG-II

Gianluca Cavoto

INFN Roma

On behalf of the MEG collaboration

FPCP 2014

Marseille

26th- 30th May 2014

WHY $\mu \rightarrow e\gamma$?

• Standard Model prediction for BF $\propto (m_v/m_W)^4 < 10^{-55}$

not enough protons in the whole Universe to check this

SM expectation...

 Current experimental limit (10⁻¹²) close to <u>many</u>
 New Physics model predictions

 Clear two-body signal topology background suppressed by better and better detectors.

Heaviest Right Handed v mass

A LONG STORY

G.Cavoto

THE MEG EXPERIMENT

- PSI πE5 DC positive muons beam J.~Adam et al., Eur.Phys.J. C 73 (2013) 2365
 - R_μ= 3x10⁷ stopped muon per second

- 900L LXe photon detector
 - Low mass
 drift ch. planes
 with fast scintillators
 in a gradient
 magnetic field

Optimized to detect photon with high efficiency and to sweep out Michel positron searching for the signal with an unprecedented resolution

MEG DATASETS

G.Cavoto

May 30th 2014

ANALYSIS OVERVIEW

- Five observables
 - E_{γ} , E_{e} , $T_{e\gamma}$, $\theta_{e\gamma}$, $\phi_{e\gamma}$
- Signal [rate ∝ R_{ii}]
 - Muon at rest:
 - $E_v = E_e = 52.8 \text{ MeV}$
 - Back-to-back
 - $T_{e\gamma} = 0$

ANALYSIS region

 $48 < E_{\gamma} < 58 \text{ MeV}$ $50 < E_{e} < 56 \text{ MeV}$ $|T_{e\gamma}| < 0.7 \text{ ns}$ $|\theta_{e\gamma}| < 50 \text{ mrad}$ $|\phi_{e\nu}| < 50 \text{ mrad}$

- Backgrounds
 - Accidental coincidence [α R_μ²]
 - Michel e⁺ & γ (γ from either RMD, e⁺annihilation, or e⁺Bremsstrahlung)
 - Radiative Michel Decay (RMD) [∝ R_μ]
 - T_{ev}=0 but x20 less than accindental

PDF DEFINITIONS

Resolution for E_v

$$\pi^- p \rightarrow \pi^0 n$$

Selecting back to back photons Michel spectrum in T_{ey} sidebands (fit to the edge)

Accidental E,

 $T_{e\gamma}$ sidebands

RMD in E_γ sidebands

Positron angular and position resolution from double turn tracks

May 30th 2014

2009-2011 RESULTS

CONFIDENCE INTERVALS

Frequentistic procedure based on the profile likelihood ratio

Sensitivity 5

(Median of the upper limit distribution on ensemble of toy MC experiments)

BR(
$$\mu \to e \gamma$$
) < 5.7 x 10⁻¹³

J.Adam et al., PRL 110 (20), 201801

CONSTRAINTS ON NEW PHYSICS

Four times more stringent constraint than previous result

Correlations in MSSM

SUSY and see-saw

G.Cavoto

OUTLOOK ON MEG

FINAL MEG results will have a sensitivity

$$S = 5 \cdot 10^{-13}$$

- Approaching the limit of current detector performance
 - $R_{ACC} \propto R_{\mu}^2 \cdot f_e \cdot f_{\gamma} \cdot \delta \omega / 4\pi \cdot \delta t$
- BUT muon beam rate (R_{μ}) not fully exploited
- AND New Physics can show up at (any?) lower BF

MEG detector upgrade: MEG-II

MEG-II CONCEPT

MEG Upgrade Proposal

(http://arxiv.org/abs/arXiv:1301.7225)

G.Cavoto

May 30th 2014

MEG-II GOALS

Expected beam rate: $7x10^7 \mu/s$

Expected performances

Expected performances					
Present MEG	Upgrade scenario				
306 (core)	130				
9.4	5.3				
8.7	3.7				
2.4 / 1.2	1.6 / 0.7				
2.4 / 1.7	1.1 / 1.0				
5/5/6	2.6 / 2.2 / 5				
122	84				
≈ 99	≈ 99				
63	69				
40	88				
	306 (core) 9.4 8.7 2.4 / 1.2 2.4 / 1.7 5 / 5 / 6 122 ≈ 99 63				

MEG-II Sensitivity: 5 10⁻¹⁴

NEW POSITRON SPECTROMETER

Old

- Single volume 2π coverage drift chamber
- 2-m long, stereo wire, low mass chamber
 - 1200 sense wires
 - 8° stereo angle (z reco.)
 - $1.7 \times 10^{-3} X_0$ per track
- Higher transparency to timing counter
 - Double the detection efficiency!
 - Precise reconstruction of path length (better timing resolution)

Gradient

Magnetic

Field

TRACKER REQUIREMENTS

Instantaneous rate capability

Hit rate >30 kHz/cm² on the innermost wire @ $7x10^7 \mu/s$

Long term stability and ageing

Test up to 0.5C/cm, no severe problem Gain drop compensated by HV increase

PROTOTYPING DCH

Test beam @ BTF Frascati

Full integration prototype

Full length prototype

Stereo angle concept test G.Cavoto

NEW POSITRON TIMING COUNTER

~250 counters ×2 (upstream, downstream side)

Present

Upgrade

Pixelated detector

- 600 counters read out by SiPM
- Many time measurements per track
- Better geometry (pixel along track direction)
- Better handling of pile-up

G.Cavoto

TC PROTOTYPING

Test at LNF BTF

Voltage [V]

Series of 5 SiPM reading a scintillator tile

Tim resolution < 40 ps achieved!

UPGRADED LXE DETECTOR

- Smaller devices
 - Better light collection
- PMT rearrangement
 - Better light containment

Better position and energy resolution for shallow events

G.Cavoto May 30th 2014

NEW BIG SIPM

- 1. VUV sensitive : λ ~ 175 nm for LXe scint.
- 2. large area : $10x10 \text{ mm}^2 \rightarrow \text{~} 4000 \text{ channels}$
- 3. fast: large sensor shows long tail.
 Bad S/N, time resolution and pileup

Developed with Hamamatsu

PDE > 15%

Remove protective layer and use quartz protection!

Short pulse shape & good S/N by adopting a novel SiPM connection method

NEW ELECTRONICS

- Four times more channels
- Preserve full waveform recording
- multi-functional digitization board integrating both digitization and triggering

3U Eurocard with custom backplane

Design is going on, prototype available soon, will be used in test beams

ANCILLARY DEVICES

Radiative decay counter

Active target

Active target using scintillation fibers is proposed to measure the 1D position of the emitted positrons

- Scintillation light will be read by SiPMs
- Efficiency is important key

Not polished and polished

Not Al and with 30nm Al deposit

Not yet part of the MEG-II detector, but R&D well advanced.

G.Cavoto

May 30th 2014

MEG-II TIMELINE

arXiv:1301.7225

- A six year program
- Assuming exclusive use of PiE5 beam line at PSI during data-taking

The upgrade program is fully funded (5.5 M\$) and is proceeding in time

 Construction phase will start at the end of 2014/beginning 2015

FUTURE PLANS AT PSI

Muons from PSI

DC muon beams at PSI:

πE5 beamline: ~ 10⁸ muons/s
 (MEG experiment, Mu3e phase I)

Currently available

SINQ (spallation neutron source) targetcould even provide

 $\sim 5 \times 10^{10}$ muons/s

High intensity muon beamline (HIMB) proposal

After 2017 (?)

 The μ → eee experiment (final stage) requires 2 × 10⁹ muons/s focused and collimated on a ~2 cm spot

Niklaus Berger – Lecce, May 2013 – Slide 23

G.Cavoto

May 30th 2014

STATUS OF THE UPGRADE

 DCH: test mounting procedure soon (wiring on PCB, PCB positioning,...)
 Start construction later this year

PCB on endcap

- XEC: beam test with 600 big SiPM reading LXe large prototype (beg. next year)
- TC: construct a realistic prototype and test it on beam (later this year)

G.Cavoto

CONCLUSIONS

 MEG at PSI has established a new constraint on the existence of the LFV µ →eγ decay

BR(
$$\mu \rightarrow e \gamma$$
) < 5.7 x 10⁻¹³ at 90% C.L.

- The final MEG $S = 5 \cdot 10^{-13}$
 - Final results to be released soon
- MEG-II program is proceeding timely
 - Keep MEG basic design but improvement in all the subsystems, important upgrade of the positron spectrometer
- By 2018 ultimate sensitivity will be 5 = 5 10-14

NEVER GIVE UP...

G.Cavoto May 30th 2014

BACK UP SLIDES

G.Cavoto May 30th 2014

MODEL INDEPENDENTLY...

dipole couplings

 κ = model parameter

 Λ = common effective mass scale

eµqq contact IA

Effective cLFV Lagrangian:

$$L = \frac{m_{\mu}}{\Lambda^2 \left(1 + \kappa\right)} \; H^{dipole} + \frac{\kappa}{\Lambda^2 \left(1 + \kappa\right)} \; J_{\nu}^{e\mu} J^{\nu,qq}$$

EVENT DISPLAY

G.Cavoto

May 30th 2014

MAX. LIKELIHOOD ANALYSIS

- Extended maximum likelihood analysis
 - Determine number of signal S in signal region
 - Constraints on background rate
 (Accidental [A] and radiative [R]) from sidebands
- Probability Density Function (PDF) from data
 - Resolution from sideband analysis or dedicated samples
 - Background PDF directly from sidebands!
 - Event-by-event resolution

$$\mathcal{L}(\vec{x}_1,\ldots,\vec{x}_N,R_\diamond,A_\diamond|\hat{S},\hat{R},\hat{A}) = \frac{e^{-\hat{N}}}{N!}e^{-\frac{1}{2}\frac{(A_\diamond-\hat{A})^2}{\sigma_A^2}}e^{-\frac{1}{2}\frac{(R_\diamond-\hat{R})^2}{\sigma_R^2}}\prod_{i=1}^{N}\left(\hat{S}s(\vec{x}_i) + \hat{R}r(\vec{x}_i) + \hat{A}a(\vec{x}_i)\right)$$

FIT TO SIDEBAND

Fictitious analysis regions in the sidebands of E_{γ} , $T_{e\gamma}$ and relative angles used as control samples

Angle sideband definition (events with $T_{ev} \approx 0$)

Limits consistent with toy MC studies

G.Cavoto May 30th 2014

2009 & 2010 RESULTS

[MINOS errors]

DISTRIBUTION OF EVENTS

52.4<*E*_e<55MeV, 51<*E*_V<55.5MeV

G.Cavoto

XEC SUMWAVEFORM ANALYSIS

- Meant to identify pile-up events and improve E_y resolution
 - Light distribution in XEC not good enough
- Sum all the PMT (weighted) waveform
 - Based on time and position reconstruction
- Multi-template fit: main wf is the closest to event time

Crucial for high beam rate!

SUMMARY OF PERFORMANCES

	2009	2010	2011	Note
Gamma E [%]	1.89	1.90	1.65	Effective sigma
Relative timing T _{eγ} [ps]	160	130	140	RMD with E_{γ} < 48 MeV
Positron E [keV]	306(86%)	306 (85%)	304(86)	Michel edge (core resolution)
Positron θ [mrad]	9.4	10.4	10.6	Double turn
Positron φ at zero [mrad]	8.7	9.5	9.8	Double turn
Positron Z/Y [mm]	2.4/1.2	3.0/1.2	3.1/1.3	Double turn, Y core resolution
Gamma position [mm]	5(u,v)6(w)	5(u,v)6(w)	5(u,v)6(w)	
Trigger/DAQ efficiency [%]	91/75	92/76	97/96	
Gamma efficiency [%]	63	63	63	π^0 sample
Positron efficiency [%]	43	36	36	From MC

Measured quantities are reported here

Correlation and per-event event error included in the ML

G.Cavoto

May 30th 2014

"NORMALIZATION" FACTOR

$$N_{e\gamma} = BR(\mu^+ \rightarrow e^+ \gamma) \cdot k$$

TWO METHODS:

Count (prescaled) Michel positron – correcting for small difference with signal

Count radiative decays

Projected RMD distributions (2011 data)

In 2011 data $k(RMD) = 3.96 \pm 0.24 \cdot 10^{12}$

OTHER SEARCHES AND MEASUREMENT

- Measurement of RMD (μ→eννγ) branching ratio and decay parameters
 - Subject of a paper in preparation
- Search for μ→eJ with J a (almost) massless particle [Majoron]
 - MEG could improve TWIST limit with full MEG stat
- Search for $\mu \rightarrow eJ\gamma$
 - Feasibility study on going (we could improve Crystalbox limit)
- Muon polarization
 - Measurement done, subject of a paper
- Polarized muon lifetime in flight
 - Exotic theory predicting a different value
 - Data without MEG target to be analyzed

SEARCH FOR $\mu \rightarrow e$ " ϕ ", $\phi \rightarrow \gamma \gamma$

• Long lifetime, small mass resonance " ϕ "

No signal at 90% CL

Full stat. (2009 to 2013) can improve it by a factor 3

G.Cavoto

May 30th 2014

UPGRADE DETECTORS

 Single volume DCH with stereo angle wires configuration

 Scintillator tiles TC with SiPM readout

- SiPM readout XEC with a larger sensitive volume
- Thinner target or active target

