Strong thermal leptogenesis:

an exploded view of the low energy neutrino parameters in the SO(10)-inspired model

by: Luca Marzola

Based on:

- P. Di Bari, LM: SO(10)-inspired solution to the problem of the initial conditions in leptogenesis - Nucl. Phys. B877 (2013)
- •P. Di Bari, S.Blanchet, D.A. Jones, LM: Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations JCAP 1301 (2013)
- P. Di Bari, E. Bertuzzo, LM: The problem of the initial conditions in flavoured leptogenesis and the τ N₂-dominated scenario - Nucl.Phys. B849 (2011)

Two Problems...

The current paradigms of Particle Physics (Standard Model) and Cosmology (Λ-CDM Model) do not explain:

Neutrino oscillations

Baryon asymmetry of the Universe

... one solution: leptogenesis

Minimal type I Seesaw extension of the Standard Model:

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_{Ri}}\partial^{\mu}\gamma_{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\Phi} - \frac{1}{2}\overline{N_{Ri}^{c}}D_{M_{i}}N_{Rj} + \text{H.c.}$$

$$(i = 1, 2, 3) \quad (\alpha = e, \mu, \tau)$$

- 3 RH neutrinos with a Majorana mass term
- Yukawa term for neutrinos

$$D_x$$
:=diag(X_1, X_2, X_3)

... one solution: leptogenesis

Minimal type I Seesaw extension of the Standard Model:

$$\mathcal{L} = \mathcal{L}_{SM} + i \overline{N_{Ri}} \partial^{\mu} \gamma_{\mu} N_{Ri} - h_{\alpha i} \overline{\ell_{L\alpha}} N_{Ri} \widetilde{\Phi} - \frac{1}{2} \overline{N_{Ri}^c} D_{M_i} N_{Rj} + \text{H.c.}$$

$$(i = 1, 2, 3) \quad (\alpha = e, \mu, \tau)$$

S.B. + Heavy R.H.N.

$$-(m_D)_{\alpha i}\overline{\nu_{L\alpha}}N_{Ri} \qquad [M] \gg [m_D]$$

— > Type I Seesaw:

$$M_{light} \approx -m_D M^{-1} m_D^T$$
 $M_{heavy} \approx M$

... one solution: leptogenesis

Minimal type I Seesaw extension of the Standard Model:

$$\mathcal{L}=\mathcal{L}_{SM}+i\overline{N_{Ri}}\partial^{\mu}\gamma_{\mu}N_{Ri}-h_{lpha i}\overline{\ell_{Llpha}}N_{Ri} ilde{\Phi}-rac{1}{2}\overline{N_{Ri}^{c}}D_{M_{i}}N_{Rj}+ ext{H.c.}$$
 ($i=1,2,3$) ($lpha=e,\mu, au$)

S.B. $egin{array}{c} + & \text{Heavy R.H.N.} \\ m_{D})_{lpha i}\overline{
u_{Llpha}}N_{Ri} & [M]\gg[m_{D}] \end{array}$ out of eq.

 $-(m_D)_{lpha i}\overline{
u_{Llpha}}N_{Ri}$ $[M]\gg [m]$ \longrightarrow Type I Seesaw: $M_{light}pprox -m_DM^{-1}m_D^T$ $M_{heavy}pprox M$

 $\eta_B \simeq 10^{-2} N_{B-L}^f$

SM Sphaleron:

Sakharov's conditions

- The baryon asymmetry of the Universe, $\eta_B := (n_B n_{\bar{B}})/n_{\gamma}$, cannot be set by an initial condition because of inflation.
 - → It must be the consequence of a dynamical mechanism

Sakharov's conditions

- The baryon asymmetry of the Universe, $\eta_B := (n_B n_{\bar{B}})/n_{\gamma}$, cannot be set by an initial condition because of inflation.
 - It must be the consequence of a dynamical mechanism (leptogenesis perhaps?)
- A successful dynamical mechanism requires:
 - I) (L and) B violation:

$$-\mathcal{L} \supset -\frac{1}{2} \sum_{i=1}^{3} \overline{N_{Ri}^{c}} D_{Mi} N_{Ri} \longrightarrow \Delta L \neq 0$$

− Sphaleron $\rightarrow \Delta B \neq 0$

Sakharov's conditions

- The baryon asymmetry of the Universe, $\eta_B := (n_B n_{\bar{B}})/n_{\gamma}$, cannot be set by an initial condition because of inflation.
 - It must be the consequence of a dynamical mechanism (leptogenesis perhaps?)
- A successful dynamical mechanism requires:
 - I) (L and) B violation:

$$-\mathcal{L} \supset -\frac{1}{2} \sum_{i=1}^{3} \overline{N_{Ri}^{c}} D_{Mi} N_{Ri} \longrightarrow \Delta L \neq 0$$

- − Sphaleron $\rightarrow \Delta B \neq 0$
- 2) C and CP violation:
 - C violated by weak interactions
 - CP violation:

$$\epsilon_i = -\frac{\Gamma(N_i \to \ell \phi) - \Gamma(N_i \to \overline{\ell \phi})}{\Gamma(N_i \to \ell \phi) + \Gamma(N_i \to \overline{\ell \phi})}$$

$$\epsilon_{i} = -\frac{\int d\Pi_{\ell,\phi} \left[|h_{\alpha i}(1+\beta \mathcal{F})|^{2} - |h_{\alpha i}^{*}(1+\beta^{*}\mathcal{F})|^{2} \right]}{\int d\Pi_{\ell,\phi} \left[|h_{\alpha i}(1+\beta \mathcal{F})|^{2} + |h_{\alpha i}^{*}(1+\beta^{*}\mathcal{F})|^{2} \right]} \simeq 2\Im(\beta)\Im\left(\int \mathcal{F} d\Pi_{\ell,\phi}\right)$$

 \mathcal{F} loop factor with effective coupling $\beta = \beta(h)$

A non-vanishing CP violation imposes complex couplings $h_{\alpha i}$ and more than one heavy neutrino.

$$\epsilon_{i} = -\frac{\int d\Pi_{\ell,\phi} \left[|h_{\alpha i}(1+\beta \mathcal{F})|^{2} - |h_{\alpha i}^{*}(1+\beta^{*}\mathcal{F})|^{2} \right]}{\int d\Pi_{\ell,\phi} \left[|h_{\alpha i}(1+\beta \mathcal{F})|^{2} + |h_{\alpha i}^{*}(1+\beta^{*}\mathcal{F})|^{2} \right]} \simeq 2\Im(\beta)\Im\left(\int \mathcal{F} d\Pi_{\ell,\phi}\right)$$

 \mathcal{F} loop factor with effective coupling $\beta = \beta(h)$

A non-vanishing CP violation imposes complex couplings $h_{\alpha i}$ and more than one heavy neutrino.

3) Out-of-equilibrium dynamics:

–in thermal equilibrium: density matrix $\rho = \frac{e^{-H/T}}{Z}$

$$\langle Q(t)\rangle = \frac{\mathrm{Tr}}{Z} \left(e^{-H/T} Q(t) \right) = \frac{\mathrm{Tr}}{Z} \left(e^{-H/T} e^{-iHt} Q(t=0) e^{iHt} \right) = \langle Q(0)\rangle$$

-deviations from equilibrium arise because of the expansion of the Universe: decoupling condition $\Gamma/H \lesssim 1$

A taste of Leptogenesis:

A simplified scenario: N₁ Leptogenesis (no flavour effects).

•Given $z := M_1/T$, the N_1 abundance per comoving volume is:

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$

A taste of Leptogenesis:

A simplified scenario: N₁ Leptogenesis (no flavour effects).

•Given $z := M_1/T$, the N_1 abundance per comoving volume is:

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$

•Decays produce a B-L asymmetry abundance:

$$\frac{dN_{B-L}}{dz} = \epsilon_1 D_1 (N_{N_1} - N_{N_1}^{eq}) - W_1 N_{B-L}$$

A taste of Leptogenesis:

A simplified scenario: N₁ Leptogenesis (no flavour effects).

•Given $z := M_1/T$, the N_1 abundance per comoving volume is:

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$

•Decays produce a B-L asymmetry abundance:

$$\frac{dN_{B-L}}{dz} = \epsilon_1 D_1 (N_{N_1} - N_{N_1}^{eq}) - W_1 N_{B-L}$$

The involved parameters

$$D_i(z_i) := \frac{\Gamma_{D_i}(T) + \Gamma_{\bar{D}_i}(T)}{H z_i} \propto K_i \qquad W_i(z_i) = \frac{1}{2} D_i(z_i) N_{N_1}^{eq}(z_i) \propto K_i$$

depend on the decay efficiency parameter

$$K_i := \frac{\Gamma_{D_i}(T=0) + \Gamma_{\bar{D}_i}(T=0)}{H(z_i=1)}$$

> connection to low energy parameters $ilde{m_i}\coloneqq rac{(m_D^\dagger m_D)_{ii}}{M_i}$

$$\tilde{m_i} \coloneqq \frac{(m_D^{\dagger} m_D)_{ii}}{M_i}$$

$$K_i \equiv \frac{\tilde{m_i}}{m_*}$$

$$K_i \equiv \frac{\tilde{m}_i}{m_*}$$
 $m_* \coloneqq \frac{16\pi^{5/2}\sqrt{g_*}}{3\sqrt{5}} \frac{v^2}{M_{Pl}} \simeq 1.08 \times 10^{-3} \text{ eV}$

• Focus on strong washout regime: $K_1 >> 1$

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$

$$\frac{dN_{B-L}}{dz} = \epsilon_1 D_1 (N_{N_1} - N_{N_1}^{eq}) - W_1 N_{B-L}$$

• Focus on strong washout regime: $K_1 >> 1$

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{eq} \right)$$

$$\frac{dN_{B-L}}{dz} = \epsilon_1 D_1 (N_{N_1} - N_{N_1}^{eq}) - W_1 N_{B-L}$$

• Focus on strong washout regime: $K_1 >> 1$

•Flavour effects complicate the picture

$$\Gamma_{\alpha} > \Gamma_{ID_i}$$
 Leptogenesis is flavour sensitive if the charged lepton Yukawa interactions are fast enough!

•Flavour effects complicate the picture

$$\Gamma_{\alpha} > \Gamma_{ID_i} \longleftrightarrow$$
 Leptogenesis is flavour sensitive if the charged lepton Yukawa interactions are fast enough!

lepton Yukawa interactions are fast enough!

-Fully flavoured regimes: B.E. for individual flavour components

•Flavour effects complicate the picture

$$\Gamma_{\alpha} > \Gamma_{ID_i} \longleftrightarrow$$

Leptogenesis is flavour sensitive if the charged lepton Yukawa interactions are fast enough!

-Fully flavoured regimes: B.E. for individual flavour components

-Decoherence effects (an abstract depiction of):

for T~M_i:
$$N_i$$
 ℓ_i ℓ_i ℓ_i ℓ_i ℓ_i

• The model introduces 18 new parameters, can it be predictive? Shift the parametrization as follows:

$$15 + 3 → 6 + 3 + 6 + 3$$

 $h_{αi}, M_i → U, m_i, V_L, m_{Di}$

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_{Ri}}\partial^{\mu}\gamma_{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\Phi} - \frac{1}{2}\overline{N_{Ri}^{c}}D_{M_{i}}N_{Rj} + \text{H.c.}$$

$$(i = 1, 2, 3) \quad (\alpha = e, \mu, \tau)$$

$$m_{\nu} = -m_{D}\frac{1}{D_{M}}m_{D}^{T} \qquad -D_{m} = U^{\dagger}m_{\nu}U^{*}$$

$$m_{D} = V_{L}^{\dagger}D_{m_{D}}U_{R}$$

• The model introduces 18 new parameters, can it be predictive? Shift the parametrization as follows:

$$\begin{array}{c} 15+3 \rightarrow 6+3+6+3 \\ h_{\alpha i}, M_{i} \rightarrow U, m_{i}, V_{L}, m_{Di} \\ \end{array}$$
 neutrino oscillation experiments (info on mixing angles in U and mass splittings)
$$\begin{array}{c} P. Di \ Bari, \ A. \ Riotto, 2008 \\ SO(10)-inspired \ conditions \\ (m_{Di}\sim m_{ui}, V_{L} \sim V_{CKM}) \end{array}$$

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_{Ri}}\partial^{\mu}\gamma_{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\Phi} - \frac{1}{2}\overline{N_{Ri}^{c}}D_{M_{i}}N_{Rj} + \text{H.c.}$$

$$(i = 1, 2, 3) \quad (\alpha = e, \mu, \tau)$$

$$m_{\nu} = -m_{D}\frac{1}{D_{M}}m_{D}^{T} \qquad -D_{m} = U^{\dagger}m_{\nu}U^{*}$$

$$m_{D} = V_{L}^{\dagger}D_{m_{D}}U_{R}$$

• The model introduces 18 new parameters, can it be predictive? Shift the parametrization as follows:

$$\begin{array}{c} 15+3 \rightarrow 6+3+6+3 \\ h_{\alpha i}, M_{i} \rightarrow U, m_{i}, V_{L}, m_{Di} \\ \end{array}$$
 neutrino oscillation experiments (info on mixing angles in U and mass splittings)
$$\begin{array}{c} P. \, Di \, Bari, \, A. \, Riotto, \, 2008 \\ SO(10) - inspired \, conditions \\ (m_{Di} \sim m_{ui}, V_{L} \sim V_{CKM}) \end{array}$$

• The resulting heavy neutrino mass spectrum is hierarchical:

$$M_3 > 10^{12} \text{ GeV} > M_2 > 10^9 \text{ GeV} \gg M_1$$

- Leptogenesis is dominated by the dynamics of N₂
- The B-L asymmetry evolves through a sequence of separated stages each described by a set of flavoured Boltzmann equations.

• The model introduces 18 new parameters, can it be predictive? Shift the parametrization as follows:

$$\begin{array}{c} 15+3 \rightarrow 6+3+6+3 \\ h_{\alpha i}, M_{i} \rightarrow U, m_{i}, V_{L}, m_{Di} \\ \end{array}$$
 neutrino oscillation experiments (info on mixing angles in U and mass splittings)
$$\begin{array}{c} P. \, Di \, Bari, \, A. \, Riotto, \, 2008 \\ SO(10) - inspired \, conditions \\ (m_{Di} \sim m_{ui}, V_{L} \sim V_{CKM}) \end{array}$$

• The resulting heavy neutrino mass spectrum is hierarchical:

$$M_3 > 10^{12} \text{ GeV} > M_2 > 10^9 \text{ GeV} \gg M_1$$

- Leptogenesis is dominated by the dynamics of N₂
- The B-L asymmetry evolves through a sequence of separated stages each described by a set of flavoured Boltzmann equations.

S. Blanchet, P. Di Bari, D.A. Jones, LM, 2013

we can constrain the parameter space of the model by requiring $\eta_B^{lept}pprox\eta_B^0$

But which initial conditions?

• An 'ethical' problem: unknown initial conditions

Remarkably, 10^{-9} is a natural value for η_B^{lept} . However, we cannot neglect the impact of a possible preexisting B-L asymmetry ($N_{B-L}^{preex,0} \sim \mathcal{O}(1)$?) as it also would contribute into the measured baryon asymmetry:

$$\eta_B^0 \approx 10^{-2} \left(N_{B-L}^{lept,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

But which initial conditions?

• An 'ethical' problem: unknown initial conditions

Remarkably, 10^{-9} is a natural value for η_B^{lept} . However, we cannot neglect the impact of a possible preexisting B-L asymmetry ($N_{B-L}^{preex,0} \sim \mathcal{O}(1)$?) as it also would contribute into the measured baryon asymmetry:

$$\eta_B^0 \approx 10^{-2} \left(N_{B-L}^{lept,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

• On a more practical level:

how to <u>safely</u> impose $\eta_B^{lept} \approx \eta_B^0$ and constrain the SO(10)-inspired model?

But which initial conditions?

• An 'ethical' problem: unknown initial conditions

Remarkably, 10^{-9} is a natural value for η_B^{lept} . However, we cannot neglect the impact of a possible preexisting B-L asymmetry ($N_{B-L}^{preex,0} \sim \mathcal{O}(1)$?) as it also would contribute into the measured baryon asymmetry:

$$\eta_B^0 \approx 10^{-2} \left(N_{B-L}^{lept,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

On a more practical level:

how to <u>safely</u> impose $\eta_B^{lept} pprox \eta_B^0$ and constrain the SO(10)-inspired model?

Solution: require strong thermal leptogenesis

$$\eta_B^0 \approx 10^{-2} \left(N_{B-L}^{lept,f} + N_{B-L}^{preex,f} \right) \approx 10^{-9}$$
 Strong thermal Leptogenesis

as a result:

- leptogenesis is independent of its (unknown) initial conditions
- imposing $\eta_B^{lept} pprox \eta_B^0$ indeed constrains the model

•N₁ leptogenesis (no flavour effects)

$$\frac{dN_{B-L}^{preex}}{dz} = -W_1 N_{B-L}^{preex} \longrightarrow N_{B-L}^{preex,f} = N_{B-L}^{preex} e^{-\frac{3\pi}{8}K_1}$$

A strong washout $(K_1 >> 1)$ ensures strong thermal leptogenesis is achieved

•N₁ leptogenesis (no flavour effects)

$$\frac{dN_{B-L}^{preex}}{dz} = -W_1 N_{B-L}^{preex} \longrightarrow N_{B-L}^{preex,f} = N_{B-L}^{preex} e^{-\frac{3\pi}{8}K_1}$$

A strong washout $(K_1 >> 1)$ ensures strong thermal leptogenesis is achieved

Considering flavour effects

•N₁ leptogenesis (no flavour effects)

$$\frac{dN_{B-L}^{preex}}{dz} = -W_1 N_{B-L}^{preex} \longrightarrow N_{B-L}^{preex,f} = N_{B-L}^{preex} e^{-\frac{3\pi}{8}K_1}$$

A strong washout $(K_1 >> 1)$ ensures strong thermal leptogenesis is achieved

Considering flavour effects

•N₁ leptogenesis (no flavour effects)

$$\frac{dN_{B-L}^{preex}}{dz} = -W_1 N_{B-L}^{preex} \longrightarrow N_{B-L}^{preex,f} = N_{B-L}^{preex} e^{-\frac{3\pi}{8}K_1}$$

A strong washout $(K_1 >> 1)$ ensures strong thermal leptogenesis is achieved

Considering flavour effects

No simple criterion ensures a complete washout. Importance of the heavy neutrinos mass spectrum which selects which regimes are encountered.

-

The only possible solution

The only possible solution

The conditions on the decay efficiency parameter and the implied mass spectrum define the τ -N₂ dominated scenario.

A remarkable feature:

• Due to *flavour effects*, strong thermal Leptogenesis requires non trivial conditions on key parameters that regulate the dynamics of the Leptogenesis process.

E. Bertuzzo, P. Di Bari & LM, 2011

A remarkable feature:

• Due to *flavour effects*, strong thermal Leptogenesis requires non trivial conditions on key parameters that regulate the dynamics of the Leptogenesis process.

E. Bertuzzo, P. Di Bari & LM, 2011

— It is remarkable that within the SO(10)-inspired model successful strong thermal Leptogenesis can be achieved!

A remarkable feature:

• Due to *flavour effects*, strong thermal Leptogenesis requires non trivial conditions on key parameters that regulate the dynamics of the Leptogenesis process.

E. Bertuzzo, P. Di Bari & LM, 2011

- It is remarkable that within the SO(10)-inspired model successful strong thermal Leptogenesis can be achieved!
- It is even more remarkable that adopting these strong thermal Leptogenesis solutions results in sharp predictions that the SO(10)-inspired model casts on all the low energy neutrino parameters

Predictions from:

SO(10)-inspired model

strong thermal leptogenesis

•Light (i.e. ordinary) neutrinos ordering:

 \mathbf{v}_{e} \mathbf{v}_{μ} \mathbf{v}_{μ}

Normal ordering

Inverted ordering

•Light (i.e. ordinary) neutrinos ordering:

Strong SO(10)-inspired leptogenesis solutions exclude inverted ordering as no strong thermal solution is found in this setup

In the following plots:

• yellow regions represent successful Leptogenesis solutions:

$$N_{B-L}^{lept,f} \approx 10^{-7} \longrightarrow \eta_B^{lept} \approx \eta_B^0$$

 other colours quantify the 'strength' of the strong thermal solutions:

$$N_{B-L}^{preex,0} = 10^{-3}, 10^{-2}, 10^{-1} \longrightarrow N_{B-L}^{preex,f} < 10^{-8}$$

(N.B: strong thermal solutions are also successful solutions)

...and of course everything applies exclusively to normal ordering

• Heavy neutrino mass spectrum:

$$N_{B-L}^{preex,0} = 0$$
, 10-3, 10-2, 10-1 $N_{B-L}^{preex,f} < 10^{-8}$

Hierarchical mass spectrum of N₂-dominated scenarios, as required by the strong thermal leptogenesis conditions

• Reactor mixing angle θ_{13}

The strong SO(10)-inspired solutions point to large values of the reactor mixing angle (lower bound $\theta_{13}>2^{\circ}$).

• Atmospheric mixing angle θ_{23}

$$N_{B-L}^{preex,0} = 0$$
, 10-3, 10-2, 10-1 $N_{B-L}^{preex,f} < 10^{-8}$

Large values of the atmospheric mixing angle are excluded. Sharp upper bound $\theta_{23} \approx 45^{\circ}$ gives a clear prediction on the octant.

• Atmospheric mixing angle θ_{23}

$$N_{B-L}^{preex,0} = 0$$
, 10-3, 10-2, 10-1 $N_{B-L}^{preex,f} < 10^{-8}$

Large values of the atmospheric mixing angle are excluded. Sharp upper bound $\theta_{23} \approx 45^{\circ}$ gives a clear prediction on the octant.

The Dirac phase and the Jarlskog invariant

Net preference for δ <0, favourite by recent global analyses for θ_{23} <45°

F. Capozzi et al. 2013 M.C. Gonzalez-Garcia et al, 2012

$$N_{B-L}^{preex,0} = 0$$
, 10-3, 10-2, 10-1 $N_{B-L}^{preex,f} < 10^{-8}$

The Dirac phase and the Jarlskog invariant

Net preference for δ <0, favourite by recent global analyses for θ_{23} <45°

F. Capozzi et al. 2013 M.C. Gonzalez-Garcia et al, 2012

$$N_{B-L}^{preex,0} = 0$$
, 10^{-3} , 10^{-2} , 10^{-1} $N_{B-L}^{preex,f} < 10^{-8}$

 $N_{B-L}^{preex,0}=$ 0, 10⁻³, 10⁻², 10⁻¹

• The signature: light neutrino mass scales

 $N_{B-L}^{preex,f} < 10^{-8}$

Sharp predictions: $m_1 \simeq 10^{-2} \text{ eV}$ $m_{ee} \simeq 10^{-2} \text{ eV}$

 $N_{B-L}^{preex,0} = 0$, 10-3, 10-2, 10-1

• The signature: light neutrino mass scales

Sharp predictions: $m_1 \simeq 10^{-2} \text{ eV}$ $m_{ee} \simeq 10^{-2} \text{ eV}$

Majorana phases

$$N_{B-L}^{preex,0} = 0$$
, 10^{-3} , 10^{-2} , 10^{-1} $N_{B-L}^{preex,f} < 10^{-8}$

The Majorana phases are very constrained, explaining the trend $m_{ee} pprox m_1$

Summary:

• Leptogenesis is an attractive scenario that potentially can explain the Baryon Asymmetry of the Universe and the origin of neutrino mass

Summary:

- Leptogenesis is an attractive scenario that potentially can explain the Baryon Asymmetry of the Universe and the origin of neutrino mass
- What will happen if strong thermal SO(10)-inspired solutions are correct:

	+
	_
_	₹
7	7
•	D

$N_{B-L}^{ m p,i}$	/	10^{-1}	10^{-2}	
θ_{13}		$\gtrsim 2^{\circ}$	$\gtrsim 0.5^{\circ}$	√ T2K, Daya Bay 2012
θ_{23}		$\lesssim 41^{\circ}$	$\lesssim 43^{\circ}$	_ _
ORDERI	ING	NORMAL	NORMAL	?? PINGU,T2K, NOvA
δ		$-\pi/2 \div \pi/5$	$\notin [0.4\pi, 0.7\pi]$	
		$\simeq \pi \text{ (marginal, only for } \theta_{23} \lesssim 36^{\circ}\text{)}$		
m_1		$(15 \div 25) \text{ meV}$	$(10 \div 30) \mathrm{meV}$	Cosmology ?
m_{ee}		$\simeq 0.8 m_1 \simeq (12 \div 20) \mathrm{meV}$	$(8 \div 24) \mathrm{meV}$	next ² generation of
				$0 \vee \beta \beta$ experiments

Summary:

- Leptogenesis is an attractive scenario that potentially can explain the Baryon Asymmetry of the Universe and the origin of neutrino mass
- What will happen if strong thermal SO(10)-inspired solutions are correct:

1	$N_{B-L}^{ m p,i}$	10^{-1}	10^{-2}		
	$ heta_{13}$	$\gtrsim 2^{\circ}$	$\gtrsim 0.5^{\circ}$	T2K , Daya Bay 2012	
	θ_{23}	$\lesssim 41^{\circ}$	$\lesssim 43^{\circ}$	1	
time	ORDERING	NORMAL	NORMAL	 	
Ē	δ	$-\pi/2 \div \pi/5$	$\notin [0.4\pi, 0.7\pi]$:: TINGO, TZK, NOV	
		$\simeq \pi$ (marginal, only for $\theta_{23} \lesssim 36^{\circ}$)		_	
	m_1	$(15 \div 25) \text{ meV}$	$(10 \div 30) \mathrm{meV}$	Cosmology ?	
\downarrow	m_{ee}	$\simeq 0.8 m_1 \simeq (12 \div 20) \mathrm{meV}$	$(8 \div 24) \mathrm{meV}$	next ² generation of	
•				$0 \vee \beta \beta$ experiments	

What happens if they are wrong:

we falsified a simple, predictive and well-defined model of Leptogenesis!

<u>Encore</u>

The Baryon asymmetry

By analysing the Cosmic Microwave Background Radiation and the primordial abundances of elements we learn about the content of the Universe.

Fitting CMBR power spectrum:

The Baryon asymmetry

By analysing the Cosmic Microwave Background Radiation and the primordial abundances of elements we learn about the content of the Universe.

Fitting CMBR power spectrum:

Multipole *l*

amount of baryons in the Universe:

$$- > \Omega_B h^2 \approx 0.02$$

 No signs of primary antimatter on different scales imply $n_{\bar{B}} = 0$

$$(n_X = # density of X)$$

There is an asymmetry between matter and antimatter in our Universe

$$\eta_B \coloneqq \frac{n_B - n_{\bar{B}}}{n_\gamma} \neq 0$$

Solid lines: BBN predictions Yellow boxes: measure 2σ range Dotted boxes: 2σ range + sys.

The agreement between BBN & CMBR is a big achievement for the \Lambda-CDM Model:

BBN tests BAU for $t \in \{10^{-2}, 10^2\}$ s CMBR for $t \approx 10^6 \mathrm{yrs}$

$$\eta_B = \frac{\rho_B}{m_p n_\gamma} = \frac{\Omega_B \rho_c}{m_p n_\gamma}$$

Today:
$$H^0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$$

 $n_{\gamma}^0 \approx 410 \text{ cm}^{-3}$
 $\rho_c^0 \approx 10.5 h^2 \text{keV cm}^{-3}$

$$---- \eta_B^0 \approx 2.7 \times 10^{-8} \Omega_B^0 h^2$$

Neutrino oscillations

Neutrinos are elusive particles that take part only in weak interactions. Up to now 3 kinds (*flavours*) of neutrino are known, named after the associated charged leptons involved in the interaction:

Suppose $\nu_{\alpha} \neq \nu_{i}$, with ν_{i} being the neutrino fields of the mass eigenstates, $i \in \{1, 2, 3\}$. Then flavour neutrinos can be regarded as (coherent) superpositions of the latter:

$$u_{\alpha} = U_{\alpha i} \nu_{i} \longrightarrow |\nu_{\alpha}\rangle = U_{\alpha i}^{*} |\nu_{i}\rangle, \qquad U \text{ unitary matrix (PMNS mixing matrix)}$$

and the Schrödinger equations for the corresponding I-particle states allow for *flavour oscillations*:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t) \coloneqq \left| \left\langle \nu_{\beta} \middle| \nu_{\alpha}(t) \right\rangle \right|^2 = \sum_{i,k=1}^3 U_{\beta i} U_{\alpha i}^* U_{\beta k}^* U_{\alpha k} e^{-\frac{\Delta m_{ik}^2 t}{2E}}, \qquad \Delta m_{ik}^2 \coloneqq m_i^2 - m_k^2$$

• Within the Standard Model neutrinos are described as massless leptons

hence our theoretical description forbids neutrino flavour oscillations!

• Within the Standard Model neutrinos are described as massless leptons

hence our theoretical description forbids neutrino flavour oscillations!

• Experimental status of neutrino oscillations: $\Delta m_{ik}^2 \neq 0$!

Neutrino mass puzzle: unknown origin of neutrino masses and mixing

Daya Bay collaboration, 2012

The Seesaw mechanism

Neutrino masses in the type I Seesaw

$$\mathcal{L} \supset \mathcal{L}_{m}^{\nu} = -h_{\alpha i} \overline{\ell_{L\alpha}} N_{Ri} \tilde{\Phi} - \frac{1}{2} \sum_{i=1}^{3} \overline{N_{Ri}^{c}} D_{Mi} N_{Ri} + \text{H.c.}$$

-Electroweak symmetry breaking:

$$-h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\phi} \xrightarrow{\langle\phi\rangle\neq 0} (m_D)_{\alpha i}\overline{\nu_{L\alpha}}N_{Ri}$$

$$m_D \coloneqq \frac{\langle \phi \rangle}{\sqrt{2}} h$$

-Seesaw mechanism: neutrinos must be Majorana particles!

$$\mathcal{L}_{m}^{\nu} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{L\alpha}} & \overline{N_{R}^{c}} \end{pmatrix} \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & D_{M} \end{pmatrix} \begin{pmatrix} \nu_{L\alpha}^{c} \\ N_{R} \end{pmatrix} + \text{H.c.} \equiv -\frac{1}{2} \overline{\mathbf{n_{L}}} \mathbb{M}_{D+M} \mathbf{n_{R}} + \text{H.c.}$$

Seesaw limit: light neutrino masses $\sim (M_{EW})^2/M_{GUT}$

$$\begin{array}{c|c} D_M\gg m_D\\ \text{see-san} \end{array} \longrightarrow D_{\mathbb{M}_{D+M}}\simeq \begin{pmatrix} m_\nu & 0\\ 0 & D_M \end{pmatrix} \qquad \boxed{m_\nu=-m_DD_M^{-1}m_D^T}$$

$$m_{\nu} = -m_D D_M^{-1} m_D^T$$

N2-dominated leptogenesis:

- Multiple-stage Boltzmann equations; vanishing initial abundance:
 - $-T\sim M_3>10^{12}$ GeV: heavy flavour regime N_3 processes are active...

$$\frac{dN_{\Delta 3}}{dz} = \epsilon_3 D_3 (N_{N_3} - N_{N_3}^{eq}) - W_3 N_{B-L}$$

...but CP asymmetry is negligible: $O\sim (M_2/M_3)^2$

$$\epsilon_3 \simeq 0 \longrightarrow N_{\Delta 3} = 0$$
 no B-L asymmetry produced

-T~ M_2 < 10^{12} GeV \land M_2 > 10^9 GeV: two-flavour regime N_2 processes generate a B-L asymmetry $(\beta = \tau, \tau_2^{\perp})$

$$\frac{dN_{\Delta 2}}{dz} = \sum_{\beta} \frac{dN_{\Delta \beta}^{(2)}}{dz} \qquad \frac{dN_{\Delta \beta}^{(2)}}{dz} = \epsilon_{2\beta} D_2 (N_{N_2} - N_{N_2}^{eq}) - p_{2\beta} W_2 N_{B-L}$$

therefore:

$$N_{\Delta 2}(T < M_2) = \epsilon_{2\tau} \kappa(K_2, K_{2\tau}) + \epsilon_{2\tau_2^{\perp}} \kappa(K_2, K_{2\tau_2^{\perp}})$$

$$\epsilon_i = -\frac{\Gamma(N_i \to \ell\phi) - \Gamma(N_i \to \overline{\ell\phi})}{\Gamma(N_i \to \ell\phi) + \Gamma(N_i \to \overline{\ell\phi})} \qquad \epsilon_2 \propto M_2 \propto \alpha_2^2$$

$$K_i \equiv \frac{\tilde{m_i}}{m_*}$$
 $K_{i\gamma} \coloneqq p_{i\gamma} K_i$ $\epsilon_{i\gamma} \coloneqq p_{i\gamma} \epsilon_i$ $p_{i\gamma} \coloneqq \frac{|(m_D)_{\gamma i}|^2}{\left(m_D^{\dagger} m_D\right)_{ii}}$

-T~M_I<10⁹ GeV: three-flavour regime

$$(\alpha = e, \mu, \tau)$$

N_I processes are active; no B-L asymmetry generated as

$$M_1 < 10^9 {
m GeV}$$
 $\epsilon_1 \simeq 0$ (Davidson - Ibarra bound)

 N_2 asymmetry is washed out: $\frac{dN_{\Delta\alpha}^{(1)}}{dz} = -p_{1\alpha}W_1p_{2\alpha}N_{\Delta2}$

$$N_{B-L}^{lep,f} := \sum_{\alpha} N_{\Delta\alpha}^{(1)}(T \ll M_1) \simeq \frac{p_{2e}}{p_{2\tau_2^{\perp}}} \epsilon_{2\tau_2^{\perp}} \kappa(K_2, K_{2\tau_2^{\perp}}) e^{-\frac{3\pi}{8}K_{1e}} + \frac{p_{2\mu}}{p_{2\tau_2^{\perp}}} \epsilon_{2\tau_2^{\perp}} \kappa(K_2, K_{2\tau_2^{\perp}}) e^{-\frac{3\pi}{8}K_{1\mu}} + \epsilon_{2\tau} \kappa(K_2, K_{2\tau}) e^{-\frac{3\pi}{8}K_{1\tau}}$$

About inverter ordering: no Strong Leptogenesis

• θ_{12} in the SO(10)-inspired models: strong thermal solutions $N_{D}^{preex,0} = 0.10^{-3}.10^{-2}$

$$N_{B-L}^{preex,0} = 0$$
, 10^{-3} , 10^{-2} , 10^{-1} $N_{B-L}^{preex,f} < 10^{-8}$

Decay efficiency parameters:

•N₂-dominated <u>Leptogenesis</u> in strong washout regime (K₂>>1)

$$N_{B-L}^{preex,0} = 0$$
, 10-3, 10-2, 10-1

$$N_{B-L}^{preex,f} < 10^{-8}$$

•Asymmetric washout from
$$N_1$$

(K_{1e} , $K_{1\mu}$ >>1; $K_{1\tau}$ ~1)

 $-1 \ 0 \ 1 \ \log_{10}(K_{1\mu})$

2

3

Status of neutrino parameters

M.C. Gonzalez-Garcia et al, 2012

	Free Fluxes + RSBL		Huber Fluxes, no RSBL	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 heta_{12}$	$0.302^{+0.013}_{-0.012}$	$0.267 \rightarrow 0.344$	$0.311^{+0.013}_{-0.013}$	$0.273 \rightarrow 0.354$
$ heta_{12}/^\circ$	$33.36^{+0.81}_{-0.78}$	$31.09 \rightarrow 35.89$	$33.87^{+0.82}_{-0.80}$	$31.52 \rightarrow 36.49$
$\sin^2 \theta_{23}$	$0.413^{+0.037}_{-0.025} \oplus 0.594^{+0.021}_{-0.022}$	$0.342 \rightarrow 0.667$	$0.416^{+0.036}_{-0.029} \oplus 0.600^{+0.019}_{-0.026}$	$0.341 \rightarrow 0.670$
$ heta_{23}/^\circ$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.3}_{-1.3}$	$35.8 \rightarrow 54.8$	$40.1_{-1.6}^{+2.1} \oplus 50.7_{-1.5}^{+1.2}$	$35.7 \rightarrow 55.0$
$\sin^2 \theta_{13}$	$0.0227^{+0.0023}_{-0.0024}$	$0.0156 \to 0.0299$	$0.0255^{+0.0024}_{-0.0024}$	$0.0181 \to 0.0327$
$ heta_{13}/^\circ$	$8.66^{+0.44}_{-0.46}$	$7.19 \rightarrow 9.96$	$9.20^{+0.41}_{-0.45}$	$7.73 \rightarrow 10.42$
$\delta_{\mathrm{CP}}/^{\circ}$	300^{+66}_{-138}	$0 \rightarrow 360$	298^{+59}_{-145}	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50_{-0.19}^{+0.18}$	$7.00 \rightarrow 8.09$	$7.51_{-0.15}^{+0.21}$	$7.04 \rightarrow 8.12$
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$+2.473^{+0.070}_{-0.067}$	$+2.276 \to +2.695$	$+2.489^{+0.055}_{-0.051}$	$+2.294 \to +2.715$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.427^{+0.042}_{-0.065}$	$-2.649 \to -2.242$	$-2.468^{+0.073}_{-0.065}$	$-2.678 \to -2.252$

Table 1. Three-flavour oscillation parameters from our fit to global data after the Neutrino 2012 conference. For "Free Fluxes + RSBL" reactor fluxes have been left free in the fit and short baseline reactor data (RSBL) with $L \lesssim 100$ m are included; for "Huber Fluxes, no RSBL" the flux prediction from [42] are adopted and RSBL data are not used in the fit.

F. Capozzi et al. 2013

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH. The CP violating phase is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$. The overall χ^2 difference between IH and NH is insignificant ($\Delta\chi^2_{\rm I-N} = -0.3$).

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2 / 10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12}/10^{-1}$ (NH or IH)	3.08	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.37 - 2.49	2.30 - 2.55	2.23 - 2.61
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.38	2.32 - 2.44	2.25-2.50	2.19 - 2.56
$\sin^2 \theta_{13}/10^{-2} \text{ (NH)}$	2.34	2.15 - 2.54	1.95-2.74	1.76 - 2.95
$\sin^2 \theta_{13}/10^{-2} \text{ (IH)}$	2.40	2.18 - 2.59	1.98 - 2.79	1.78 - 2.98
$\sin^2 \theta_{23}/10^{-1} \text{ (NH)}$	4.37	4.14 - 4.70	3.93 - 5.52	3.74 - 6.26
$\sin^2 \theta_{23}/10^{-1} \text{ (IH)}$	4.55	4.24 - 5.94	4.00 - 6.20	3.80 - 6.41
δ/π (NH)	1.39	1.12 - 1.77	$0.00-0.16\oplus0.86-2.00$	
δ/π (IH)	1.31	0.98 - 1.60	$0.00-0.02\oplus0.70-2.00$	