

Scientific American, May 2011

Cosmic rays: spectrum and composition

Cosmic ray physics in a nutshell

Positron fraction: Exotic sources of cosmic rays?

Context: Indirect search for dark matter

Example fits: 3 TeV DM particle annihilating to $\tau^+\tau^-$, with a cross section of 2·10⁻²² cm³/s

Interpreting antimatter and electron spectra in terms of dark matter requires:

- particle mass of a few TeV
- leptophilic annihilation
- very large annihilation cross section

The AMS-02 detector on the International Space Station

AMS-02 launch

Henning Gast, RWTH Aachen

p 10

5m x 4m x 3m

AMS-02

PAMELA vs AMS-02

GF: 21.5 cm² sr

GF: 250 – 3500 cm² sr, depending on physics analysis

AMS-02 overview

TRD Identify e+, e-

Silicon Tracker Z, P

ECAL E of e+, e-, γ

Particles and nuclei are defined __ by their

charge (\mathbb{Z}) and energy ($\mathbb{E} \sim P$)

TOF Z, E

Magnet ±Z

RICH Z, E

Z, **P** are measured independently by the Tracker, RICH, TOF and ECAL

5m x 4m x 3m

7.5 tons

Henning Gast, RWTH Aachen

AMS-02 particle identification

- Particle ID requires complex algorithms for each subdetector.
- Combine information from all subdetectors.
- Example: proton rejection 1:1,000,000

Cosmic rays are measured at up to 2 KHz and data is generated at ~7 Gbit/s, reduced on board to an average of ~10 Mbit/s.

AMS-02 data taking

- For every year of AMS flight:
- 20 TB raw data
- 160 TB reconstructed event data
- Data handling non-trivial!

AMS-02 performance: TRD spectra

TRD proton rejection vs rigidity

ECAL: energy resolution and proton rejection power

1.03 TeV electron

First result from AMS-02: Cosmic-ray positron fraction "First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV"

6.8 million positrons and electrons in final data sample

Selected for a
Viewpoint in Physics and
an Editors' Suggestion
[Aguilar,M. et al
(AMS Collaboration)
Phys. Rev. Lett. 110,
141102 (2013)]

PHYSICAL REVIEW LETTERS.

Published by

American Physical Society,

Volume 110, Number 14

Example of positron selection

AMS-02 positron fraction

- Steady increase from 10 to ~250 GeV
- No structure in the spectrum

Comparison to earlier measurements

A simple model

$$\Phi_{e^{+}} = C_{e^{+}}E^{-\gamma_{e^{+}}} + C_{s}E^{-\gamma_{s}}e^{-E/E_{s}}$$

$$\Phi_{e^{-}} = C_{e^{-}}E^{-\gamma_{e^{-}}} + C_{s}E^{-\gamma_{s}}e^{-E/E_{s}}$$

Limit on dipole anisotropy

Data are consistent with isotropic distribution of arrival directions:

$$\frac{r_e(b,l)}{\langle r_e \rangle} - 1 = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\pi/2 - b, l)$$

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

$$\delta = 3\sqrt{C_1/4\pi}$$

AMS-02:

 δ < 0.036 at the 95% confidence level.

- Dark matter annihilating directly to e⁺ e⁻ or μ⁺ μ⁻ no longer capable of describing observed rise in positron fraction.
- Annihilation via light intermediate states into muons and pions consistent with data, for DM masses of 1.5 3 TeV, $\langle \sigma v \rangle$ as high as $(6 23) \times 10^{-24}$ cm³/s
- Describing the Fermi all-electron spectrum at the same time requires spectral break in cosmic-ray electrons. (May be expected if single or few local sources dominate.)

Bergström et al., PRL 111 (2013) 171101

- Take generic model from AMS paper as background curve
- Try to fit lepton spectra from annihilating dark matter to AMS positron fraction

- Take generic model from AMS paper as background curve
- Try to fit lepton spectra from annihilating dark matter to AMS positron fraction

Astrophysical sources for positrons

Positrons inevitably produced in magnetosphere of pulsars and accelerated in pulsar wind nebula.

- Sum of known pulsars, assuming
 - exponentially cutoff power law spectra
 - 10-20% of spin-down power converted to CR acceleration
 - break in CR electron spectrum as before (spectral hardening at 100 GeV)

More ideas:

- Supernova remnants (radioactive nuclei from supernova ejecta) as positron sources (Erlykin & Wolfendale)
- Acceleration of secondary e[±] produced through pp interactions inside the primary sources (Ahlers et al.)
- Propagation effects (Blum et al.)

ICRC 2013: Preliminary results on cosmic-ray fluxes

AMS-02 electron and positron spectra

Summary

- Cosmic-ray research aims at answering fundamental questions about our Universe.
- AMS-02 will be the leading instrument in its field for many years to come.
- Data analysis is an extremely complex endeavour:
 - challenging environment in space
 - interplay of different sub-detectors
 - enormous data volume
- AMS-02 has measured cosmic-ray positron fraction with exquisite precision:
 - Steady increase from 10 to ~250 GeV
 - No structure in the spectrum
- Results have profound impact on the modelling of CR sources: dark matter or pulsar wind nebulae or something else (SNRs?)?
- Measurement of anisotropy in positron fraction extremely important in this context.
- First results on major particle fluxes shown at ICRC 2013 in July.
- Coming soon:
 - update on positron fraction,
 - e+ and e- fluxes,
 - proton and helium fluxes

The Cosmos is the Ultimate Laboratory.

Cosmic rays can be observed at energies higher than any accelerator.

