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Introduction
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What does this pie chart mean?
Einstein’s original equation (h = ¢ = kg = 1 in most eqs.)

1
Ry — igm”R =8nG 1T,

has no static solution. Depending on the amount of matter: open or closed.

4

~ k<o

Q27 T

2 -
75



Einstein’s "biggest blunder": force static solution by including an extra term,
‘cosmological constant” A\ ("dark energy’):

1
R.,,— zgmnR —ANgmn =81GT,, .

Cosmological principle of homogeneity and isotropy:
Friedmann (OpunamaH)-Lemaltre-Robertson-Walker (FLRW) metric

dr?
1 — kr?
Q(t) is size parameter of universe, sign of k determines universe open or closed =
Friedmann eq. from 00 component

. 8 1
0? = %Gp(@)(f — k+ A0

Divide by Hg = (C.)()/Qo)2 and set the scale parameter Qy = 1:
1= Qp + Qp + Qp

ds? = dt? — Q*(t)[ + r}(d6” + sin® 6d¢?)] .

(), : dark matter, baryonic matter, neutrinos, radiation
(), compatible with 0
(A explains accelerated expansion
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The proportions vary with the epoch:

Matter-energy content of the universe

photons 15%

dark matter 23%

neutrinos 10%

dark matter 63% dark energy 72%

13.7 billion years ago today
(universe 380,000 years old)



WMAP 7 yr. observations”
— Newer data for reference, from Planck 2013°> & WMAP 9 yr.°

Dark energy: Qp =.725+.016 — .683

Dark matter: Q. = .229 £ .0025 — .268

Baryonic matter: (), = .0458 & .0016 — .049

Curvature: QQp = —.0024 £ .0055 — still compatible with O (flat)
Age of the universe: 7o = (13.76 £ .11) Gyr — 13.81/

Hubble constant: Hy = (70.2 +1.4) km s=!' Mpc™! — 67.3
=228 x 10718 s~




Equations of state

Pi = wip;

Allowed states per phase space cell:

ni = I d’pfi(p)

p =24 &phip)E,

gi 3 P
P = 3 d’pfi(p )3Ei

fip) = (exp{(E: — p)/kT;} £ 1)~

(+) fermions, (-) bosons, g; degeneracy, p; chemcal potential (0O in good approx.)

In the relativistic limit for boson (B) and fermion (F) species:
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pr= 3O(ZgB+8ZgF) = N7



Assume perfect fluid (ux = (1,0,0,0) in co-moving coordinates) with pressure P:

o [ = (p + P)ukul — ng[

With conservation of energy

= (, T-dependence:

radiation and ultrarelativistic matter
we=13, pox1/Q' T,oc1/0Q

nonrelativistic matter (dust)
w, = 0, pmo<1/Q3, T, o< 1/0?

dark energy
whn = —1,  ppox const.

curvature
wp = —1/3, prox1/Q?



Dark energy
The Planck scale

QM combined with GR, Schwarzschild radius = Compton wavelength =

Ep; = Vhc?|G Planck energy
lp; = vV Gh/c3 = 107m Planck length

At the level of the Planck scale 1073°m, GR and QM are fundamentally interwoven.
The metric g, itself has to be regarded a quantum variable.

Conformal fluctuations

keep light cone structure of space-time intact, important for causality:
_h2s 2
® Gun =P Gmn=(1+¢)°Gmn

Gmn is classical or background metric about which the fluctuations occur,

fluctuation average is < ¢ >=< ¢, >=0.



The scalar field ¢ represents an additional degree of freedom.
The Einstein eq. can be derived from the variation of the Hilbert action (h = ¢ = 1):

_ _ 1 4
° S—Sg+5m—16ﬂ6fdx\/ gR + S,

Sy = gravitational action (Le. not Sy o< [d*x\/=g(R + 2/\)),

S, = matter part,

e 05=0 .

Example: vacuum (S,, = 0) in flat background spacetime R = 0

= Fluctuation average of the squared four-distance

<x*>=x"+ 37 .
Spacetime is fuzzy at the level of the Planck scale.
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Variation of the action with fluctuations

5S _ ., 8S

0S
—0 = .
5gtk g 5gtk

59*4—5¥6¢

e 0S =

The variations are independent = two equations, one o< 0§, the other o< d¢,
the @-dependence can then be eliminated.

At this point the field ¢, which represents the quantum fluctuations, is treated to lowest
order as an classical field, since the variational principle is applied instead of
a full Feynman path integral approach.

= Einstein equation

_ 1 _
Rix — zgsz — gi/\ =8 G Ty

where a cosmological constant arises in the form’

1 _
:> /\ — —1(87[69”7” mn + R) .
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This result does not change if starting with a some prior
(e.g. due to QFT vacuum fluctuations, the old 120-order-of-magnitude problem):

1 4
So = 755 ) V=a(R + 27

The contribution of /\ cancels in the present approach.®

12



Matter part 0S,, = —%jd“x\/—gégmn rmn
For perfect fluid:

It comes out constant and is not quintessence (scalar field coupled via potential).

Allows accelerated expansion (fig. in dust approx.):
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Dark matter

Hypothesis: cold dark matter (WIMP) neutralinos (lightest superymmetric particle, lin-
ear combination of the super-partners of the gauge and Higgs fields), since properties
quantitatively studied ? + 1%, M; ~ 10 GeV ... 1 TeV.

o | > M; thermal equilibrium due to annihilations and production processes
o | <Mj...T = M;/[25, annihilating until annihilation rate drops below Hubble rate
e but still maintain heat bath temperature via elastic collisions with fermions
o T < Tig=[1.2x10"2Mp/My(M? — M2)?]% , kinetic decoupling
(M; ~ 200 GeV slepton mass, Mp; = Planck mass)

From now on T o< 1/0%.
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Standard model particles

Relativistic components
2

JT
,==—N(TT*
pr=3oNT)

Annihilation thresholds (adapted from PDG'"):

4NMai(T) 4NPI(T)
T New particles ANL(T) [AN,(T) | AN(T) [ AN, (T)
I < me A 8 8
me < T < Tp, e* 22 2 22 42
TDV <T< m, v's 43 64
m, < T < mg p* 57 78
m,<T <1, 7's 69 90
T.<T<ms |u i d d+ gluons —n's 205 226
ms < T < mg sands 247 268
m.< T < m; c and ¢ 289 310
m; < T < my T+ 303 324
my,< T <myz b and b 345 366
myz<T < my W= and Z° 381 402
my < T < my HY 385 406
my < T t and t 427 448

"
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Entropy conservation:'> N,(QT); = N,(QT)]

e Assume latent heat makes the annihilations proceed isothermically =
step function of T (t) at each threshold.

e Between two thresholds 7, < 1/0
Neutrinos

e Decouple when interaction rate I less than Hubble rate'? at Tp, = 10'K:
[/H ~ G2T°Mp;/T? (Gr= Fermi coupling constant)

e F[ollow radiation temperature T, o< 1/Q until electrons annihilate

e Latent heat of electron annihilation makes photons hotter:
above eq. at fixed Q = & jump in N;:

T, = (%)%TV Today: T, =2.725K, T, = 1.945K
Baryons

e Not in the table since nonrelativistic when they form from quarks
at T, =2.3 x 10"%K

e Stay in thermal equilibrium with radiation until recombination 7 = 3000K
e Then follow T, o< 1/0?
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Results

Study evolution after inflation (t ~ 1073*...1073%s)

Time t in units Hy', densities Q in units of critical density 3H3/87G
Equation of motion - Friedmann eq. rewritten:

0(1) = /1(1) + () + Qu(t) + Qc(1)] Q) + O + Q2 Q(1)’

Scale factor if starting with the same value in past:
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Radiation temperature assuming Majorana neutrinos:

T(t)

| ! | ! | ! | ! | ! | ! 1
10—28 10—26 10—24 10—22 10—20 10—18 10—16
t

Only electron-positron threshold appreciable.

18



/oom:

T(t)
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Radiation and baryonic matter:
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Compare radiation temperature when neutrinos are Majorana or Dirac:

T(t)
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Radiation and neutrino temperatures:

1.% 10101
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22



Neutralinos with mass values my = 10 GeV, m, = 100 GeV, m3 = 1 TeV:

1012 1

1011 -

10°

108 A

10> 1002 107 10-2! 10720 10-"®  10°1®
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Overall density parameters:

Q1)

1048 -

1036 -

1024 -

1012 —]
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Summary

Universe as perfect fluid

Dark energy from fluctuations of metric
Dark matter as neutralinos

Calculated Q(t), Q(t), T:(1)

Average for baryonic and dark matter:
Tp(to) = 2.5 x 103K, T(tg) = 4.7 x 107K .. 1.8 x 107K

Radiation-matter equality at 22 ky
Baryonic matter decoupling at 373 ky
Dark_energy-matter equalty at 9.6 Gy

Age of universe depends slightly on neutrino character:
Majorana: 13.87 Gy, Dirac: 13.86 Gy. Observable in future?

(),(tp) differs for Majorana Dirac neutrinos. Probably hopeless to observe.
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