AVERAGE THERMAL EVOLUTION OF THE UNIVERSE¹

Natacha Leite (U. Coimbra, Portugal and U. Hamburg, Germany)
Alex H. Blin (U. Coimbra, Portugal)

Introduction
Equations of state
Dark energy
Dark matter
Standard model particles
Results
Summary
${ }^{1}$ Supported in part: FCT, CERN FP/116334/2010, 7th Framework Programme grant 283286, HAP funded by Helmholtz Association

Introduction

What does this pie chart mean?
Einstein's original equation ($\hbar=c=k_{B}=1$ in most eqs.)

$$
R_{m n}-\frac{1}{2} g_{m n} R=8 \pi G T_{m n}
$$

has no static solution. Depending on the amount of matter: open or closed.

Einstein's "biggest blunder": force static solution by including an extra term, "cosmological constant" \wedge ("dark energy"):

$$
R_{m n}-\frac{1}{2} g_{m n} R-\wedge g_{m n}=8 \pi G T_{m n}
$$

Cosmological principle of homogeneity and isotropy:
Friedmann (Фридман)-Lemaître-Robertson-Walker (FLRW) metric

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-Q^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right] .
$$

$Q(t)$ is size parameter of universe, sign of k determines universe open or closed \Rightarrow Friedmann eq. from 00 component

$$
\dot{Q}^{2}=\frac{8 \pi}{3} G \rho(Q) Q^{2}-k+\frac{1}{3} \wedge Q^{2}
$$

Divide by $H_{0}^{2}=\left(\dot{Q}_{0} / Q_{0}\right)^{2}$ and set the scale parameter $Q_{0}=1$:

$$
1=\Omega_{\rho}+\Omega_{k}+\Omega_{\wedge}
$$

Ω_{ρ} : dark matter, baryonic matter, neutrinos, radiation
Ω_{k} compatible with 0
Ω_{\wedge} explains accelerated expansion ${ }^{2}, 3$

[^0]The proportions vary with the epoch:
Matter-energy content of the universe

13.7 billion years ago (universe 380,000 years old)

WMAP 7 yr. observations ${ }^{4}$
\rightarrow Newer data for reference, from Planck 2013^{5} \& WMAP 9 yr. ${ }^{6}$
Dark energy: $\Omega_{\Lambda}=.725 \pm .016 \rightarrow .683$
Dark matter: $\Omega_{c}=.229 \pm .0025 \rightarrow .268$
Baryonic matter: $\Omega_{b}=.0458 \pm .0016 \rightarrow .049$
Curvature: $\Omega_{k}=-.0024 \pm .0055 \rightarrow$ still compatible with 0 (flat)
Age of the universe: $\tau_{0}=(13.76 \pm .11) \mathrm{Gyr} \rightarrow 13.817$
Hubble constant: $H_{0}=(70.2 \pm 1.4) \mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1} \rightarrow 67.3$

$$
=2.28 \times 10^{-18} \mathrm{~s}^{-1}
$$

[^1]
Equations of state

$$
P_{i}=\omega_{i} \rho_{i}
$$

Allowed states per phase space cell:

$$
\begin{gathered}
n_{i}=\frac{g_{i}}{h^{3}} \int \mathrm{~d}^{3} p f_{i}(p) \\
\rho=\frac{g_{i}}{h^{3}} \int \mathrm{~d}^{3} p f_{i}(p) E_{i} \\
P=\frac{g_{i}}{h^{3}} \int \mathrm{~d}^{3} p f_{i}(p) \frac{p}{3 E_{i}} \\
f_{i}(p)=\left(\exp \left\{\left(E_{i}-\mu_{i}\right) / k T_{i}\right\} \pm 1\right)^{-1}
\end{gathered}
$$

$(+)$ fermions, (-) bosons, g_{i} degeneracy, μ_{i} chemcal potential (0 in good approx.) In the relativistic limit for boson (B) and fermion (F) species:

$$
\rho_{r}=\frac{\pi^{2}}{30}\left(\sum_{B} g_{B}+\frac{7}{8} \sum_{F} g_{F}\right) T^{4} \equiv \frac{\pi^{2}}{30} N(T) T^{4}
$$

Assume perfect fluid ($u_{k}=(1,0,0,0)$ in co-moving coordinates) with pressure P :

- $T_{k l}=(\rho+P) u_{k} u_{l}-P g_{k l}$

With conservation of energy

$$
T_{; n}^{m n}=0
$$

$\Rightarrow Q, T$-dependence:
radiation and ultrarelativistic matter
$\omega_{r}=1 / 3, \quad \rho_{r} \propto 1 / Q^{4}, \quad T_{r} \propto 1 / Q$
nonrelativistic matter (dust)
$\omega_{m}=0, \quad \rho_{m} \propto 1 / Q^{3}, \quad T_{m} \propto 1 / Q^{2}$
dark energy
$\omega_{\wedge}=-1, \quad \rho_{\wedge} \propto$ const.
curvature
$\omega_{k}=-1 / 3, \quad \rho_{k} \propto 1 / Q^{2}$

Dark energy

The Planck scale
QM combined with GR, Schwarzschild radius $=$ Compton wavelength \Rightarrow
$E_{P l}=\sqrt{\hbar c^{5} / G}$ Planck energy
$l_{P l}=\sqrt{G \hbar / c^{3}} \cong 10^{-35} \mathrm{~m}$ Planck length
At the level of the Planck scale $10^{-35} \mathrm{~m}, \mathrm{GR}$ and QM are fundamentally interwoven.
The metric $g_{m n}$ itself has to be regarded a quantum variable.

Conformal fluctuations
keep light cone structure of space-time intact, important for causality:

- $g_{m n}=\Phi^{2} \bar{g}_{m n}=(1+\varphi)^{2} \bar{g}_{m n}$,
$\bar{g}_{m n}$ is classical or background metric about which the fluctuations occur, fluctuation average is $\langle\varphi\rangle=<\varphi, m>=0$.

The scalar field φ represents an additional degree of freedom.
The Einstein eq. can be derived from the variation of the Hilbert action $(\hbar=c=1)$:

- $S=S_{g}+S_{m}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} R+S_{m}$
$S_{\mathrm{g}}=$ gravitational action without \wedge (i.e. not $S_{\mathrm{g}} \propto \int \mathrm{d}^{4} x \sqrt{-g}(R+2 \wedge)$),
$S_{\mathrm{m}}=$ matter part,
- $\delta S=0$.

Example: vacuum ($S_{\mathrm{m}}=0$) in flat background spacetime $\bar{R}=0$
\Rightarrow Fluctuation average of the squared four-distance

$$
<x^{2}>=x^{2}+l^{2} / 3 \pi
$$

Spacetime is fuzzy at the level of the Planck scale.

Variation of the action with fluctuations

- $\delta S=\frac{\delta S}{\delta g^{i k}} \delta g^{i k}=\frac{\delta S}{\delta \bar{g}^{i k}} \delta \bar{g}^{i k}+\frac{\delta S}{\delta \varphi} \delta \varphi$

The variations are independent \Rightarrow two equations, one $\propto \delta \bar{g}^{i k}$, the other $\propto \delta \varphi$, the φ-dependence can then be eliminated.

At this point the field φ, which represents the quantum fluctuations, is treated to lowest order as an effective classical field, since the variational principle is applied instead of a full Feynman path integral approach.
\Rightarrow Einstein equation

$$
\bar{R}_{i k}-\frac{1}{2} \bar{g}_{i k} \bar{R}-\bar{g}_{i k} \Lambda=8 \pi G T_{i k}
$$

where a cosmological constant arises in the form ${ }^{7}$

$$
\Rightarrow \quad \wedge=-\frac{1}{4}\left(8 \pi G \bar{g}^{m n} T_{m n}+\bar{R}\right) .
$$

[^2]This result does not change if starting with a some prior $\bar{\wedge}$ (e.g. due to QFT vacuum fluctuations, the old 120-order-of-magnitude problem):

$$
S_{\mathrm{g}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g}(R+2 \bar{\wedge})
$$

The contribution of $\bar{\Lambda}$ cancels in the present approach. ${ }^{8}$

[^3]Matter part $\quad \delta S_{m}=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g} \delta g_{m n} T^{m n}$.
For perfect fluid:

$$
\Lambda=\frac{3\left(\dot{Q}^{2}+k\right)}{Q^{2}}-8 \pi G \rho_{0} \frac{Q_{0}^{3}}{Q^{3}}
$$

It comes out constant and is not quintessence (scalar field coupled via potential). Allows accelerated expansion (fig. in dust approx.):

Dark matter

Hypothesis: cold dark matter (WIMP) neutralinos (lightest superymmetric particle, linear combination of the super-partners of the gauge and Higgs fields), since properties quantitatively studied ${ }^{9},{ }^{10}, M_{\tilde{\chi}} \simeq 10 \mathrm{GeV} . . .1 \mathrm{TeV}$.

- $T>M_{\tilde{\chi}}$ thermal equilibrium due to annihilations and production processes
- $T<M_{\tilde{\chi}} \ldots T \simeq M_{\tilde{\chi}} / 25$, annihilating until annihilation rate drops below Hubble rate
- but still maintain heat bath temperature via elastic collisions with fermions
- $T<T_{k d}=\left[1.2 \times 10^{-2} M_{P l} / M_{\tilde{\chi}}\left(M_{\tilde{L}}^{2}-M_{\tilde{\chi}}^{2}\right)^{2}\right]^{-\frac{1}{4}}$, kinetic decoupling
$\left(M_{\tilde{L}} \simeq 200 \mathrm{GeV}\right.$ slepton mass, $M_{P l}=$ Planck mass $)$
From now on $T \propto 1 / Q^{2}$.

[^4]
Standard model particles

Relativistic components

$$
\rho_{r}=\frac{\pi^{2}}{30} N(T) T^{4}
$$

Annihilation thresholds (adapted from PDG^{11}):

		$4 N^{M a j}(T)$		$4 N^{\operatorname{Dir}}(T)$	
T	New particles	$4 N_{r}(T)$	$4 N_{v}(T)$	$4 N_{r}(T)$	$4 N_{v}(T)$
$T<m_{e}$	γ 's	8	21	8	42
$m_{e}<T<T_{D_{v}}$	$e^{ \pm}$	22		22	
$T_{D_{v}}<T<m_{\mu}$	v 's	43		64	
$m_{\mu}<T<m_{\pi}$	$\mu^{ \pm}$	57		78	
$m_{\pi}<T<T_{c}$	π 's	69		90	
$T_{c}<T<m_{s}$	$u, \bar{u}, d, \bar{d}+$ gluons $-\pi^{\prime} \mathrm{s}$	205		226	
$m_{s}<T<m_{c}$	s and \bar{s}	247		268	
$m_{c}<T<m_{\tau}$	c and \bar{c}	289		310	
$m_{\tau}<T<m_{b}$	$\tau^{ \pm}$	303		324	
$m_{b}<T<m_{W, Z}$	b and \bar{b}	345		366	
$m_{W, Z}<T<m_{H}$	$W^{ \pm}$and Z^{0}	381		402	
$m_{H}<T<m_{t}$	H^{0}	385		406	
$m_{t}<T$	t and \bar{t}	427		448	

[^5]Entropy conservation: ${ }^{12} \quad N_{b}(Q T)_{b}^{3}=N_{a}(Q T)_{a}^{3}$

- Assume latent heat makes the annihilations proceed isothermically \Rightarrow step function of $T(t)$ at each threshold.
- Between two thresholds $T_{r} \propto 1 / Q$

Neutrinos

- Decouple when interaction rate Γ less than Hubble rate ${ }^{12}$ at $T_{D_{v}}=10^{10} \mathrm{~K}$: $\Gamma / H \simeq G_{F}^{2} T^{5} M_{P l} / T^{2} \quad\left(G_{F}=\right.$ Fermi coupling constant $)$
- Follow radiation temperature $T_{v} \propto 1 / Q$ until electrons annihilate
- Latent heat of electron annihilation makes photons hotter: above eq. at fixed $Q \Rightarrow \mathcal{E}^{\text {jump in } N_{r} \text { : }}$

$$
T_{\nu}=\left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\nu} \quad \text { Today: } T_{\nu}=2.725 \mathrm{~K}, T_{\nu}=1.945 \mathrm{~K}
$$

Baryons

- Not in the table since nonrelativistic when they form from quarks

$$
\text { at } T_{c}=2.3 \times 10^{12} \mathrm{~K}
$$

- Stay in thermal equilibrium with radiation until recombination $T=3000 \mathrm{~K}$
- Then follow $T_{m} \propto 1 / Q^{2}$

[^6]
Results

Study evolution after inflation ($t \sim 10^{-34} \ldots 10^{-32}$ s)
Time t in units H_{0}^{-1}, densities Ω in units of critical density $3 H_{0}^{2} / 8 \pi G$
Equation of motion - Friedmann eq. rewritten:

$$
\dot{Q}(t)=\sqrt{\left[\Omega_{\nu}(t)+\Omega_{v}(t)+\Omega_{b}(t)+\Omega_{c}(t)\right] Q(t)^{2}+\Omega_{k}+\Omega_{\wedge} Q(t)^{2}}
$$

Scale factor if starting with the same value in past:

Radiation temperature assuming Majorana neutrinos:

Only electron-positron threshold appreciable.

Zoom:

Radiation and baryonic matter:

Compare radiation temperature when neutrinos are Majorana or Dirac:

Radiation and neutrino temperatures:

Neutralinos with mass values $m_{1}=10 \mathrm{GeV}, m_{2}=100 \mathrm{GeV}, m_{3}=1 \mathrm{TeV}$:

Overall density parameters:

Summary

- Universe as perfect fluid
- Dark energy from fluctuations of metric
- Dark matter as neutralinos
- Calculated $Q(t), \Omega_{i}(t), T_{i}(t)$
- Average for baryonic and dark matter:

$$
T_{b}\left(t_{0}\right)=2.5 \times 10^{-3} \mathrm{~K}, T_{c}\left(t_{0}\right)=4.7 \times 10^{-13} \mathrm{~K} \ldots 1.8 \times 10^{-11} \mathrm{~K}
$$

- Radiation-matter equality at 22 ky

Baryonic matter decoupling at 373 ky
Dark_energy-matter equalty at 9.6 Gy

- Age of universe depends slightly on neutrino character:

Majorana: 13.87 Gy, Dirac: 13.86 Gy. Observable in future?

- $\Omega_{v}\left(t_{0}\right)$ differs for Majorana Dirac neutrinos. Probably hopeless to observe.

[^0]: ${ }^{2}$ S. Perlmutter et al., Nature 391, 51 (1998)
 ${ }^{3}$ A. G. Riess et al., Astron. J. 116, 1009 (1998)

[^1]: ${ }^{4}$ E. Komatsu et al.(WMAP), Astrophys. J.Suppl. 192:18 (2011)
 ${ }^{5}$ Planck Collaboration, arXiv:1303.5062 (2013)
 ${ }^{6}$ G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208,19 (2013)

[^2]: ${ }^{7}$ A.H. Blin, arXiv:astro-ph/0107503 (2001)\& Af. J. Math. Phys. 3, 121 (2006)

[^3]: ${ }^{8}$ A.H. Blin, Int. J. Theor. Math. Phys. 2, 61 (2012)

[^4]: ${ }^{9}$ S. Hofmann, D.J. Schwarz, H. Stöcker, Phys.Rev.D64:083507 (2001)
 ${ }^{10}$ T. Bringmann, S. Hoffmann, JCAP 0407:016 (2007)

[^5]: 11J. Beringer et al. (Particle Data Group), Phys. Rev. D 86:010001 (2012)

[^6]: ${ }^{12}$ E. Kolb, M. Turner, The Early Universe, Addison-Wesley (1989)

