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@j OUTLINE

* Motivation: why study diffraction?

* ALICE experiment: setup and advantages
 Single and double diffraction measurements
 Central diffraction

 Plans for the future
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@j CROSS-SECTION AT LHC ENERGIES %
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Non-diffractive (rest of the cross-section)
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http://pdg.lbl.gov/2013/html/authors_2012.html

@j THE POMERON %

ALICE

 Pomeron: colour singlet object with vacuum quantum numbers.

 The Pomeron was introduced as a Regge trajectory responsible for
the growth of the total cross-section with collision energy.

e Events in which a pomeron is exchanged: diffraction.
* Thereby the study of diffraction helps in understanding nature of the
Pomeron and its connection the soft QCD processes and vice versa.

" E. Levin. An Introduction to Pomerons.
Regge trajectones Of TAUP 2522/98, DESY 98-120.
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@j DIFFRACTION FOR EXPERIMENTALISTS %ﬁ

 Classification of diffractive and non-diffractive processes using

(pseudo)rapidity gaps:
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» Central diffraction




@j DIFFRACTION FOR EXPERIMENTALISTS (2) %ﬁ

 Advantages of (pseudo)rapidity gap classification:

« Can be used when outgoing protons are not detected,

» Possibility to introduce asymmetric triggers with enriched diffractive

events;

 Difficulties of (pseudo)rapidity gap classification:

» Misclassification of different processes (multiplicity fluctuations, gap
survival probability);
Model-dependence of the results (detector does not see the full
Inelastic cross-section);

Limitation on maximal diffractive masses,;
A big variety of existing models — how to choose a good one?
No reliable model for central diffraction at low masses (< 1 GeV/c?).
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THE ALICE DETECTOR

Detectors which can be used in
diffractive studies: |

O tracking detectors
(with PID)

O forward “gap”
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PID CAPABILITIES OF ALICE
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Excellent PID for low momentum particles: opportunity to study central
production in various channels (rtm, KK, ...)
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ALICE PSEUDORAPIDITY COVERAGE %ﬁ
VZERO-C Barrel VZERO-A
-3.7 to -1.7 -0.9to 0.9 2.8to5.1
FMD-C SPD outer layer FMD-A
-3.4to-1.7 -1.5to 1.5 1.7to0 5.0
SPD inner layer
-2 to 2
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-3.7<n<-0.9 -0.9<n<0.9 09<n<5.1

Total pseudorapidity coverage is almost 9 units!
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@J SINGLE AND DOUBLE DIFFRACTION %
MEASUREMENTS ALICE

<} Diffractive system M
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B.Abelev et al (The ALICE Collaboration). Measurement of inelastic, single- and double-diffraction
crosssections in proton—proton collisions at the LHC with ALICE. Eur. Phys. J. C (2013) 73:2456
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@j DIFFRACTIVE MODEL %

ALICE

« The pseudorapidity gap approach for diffraction studies involves a model
with the diffractive mass distribution as a main source of systematic

uncertainties.

afthra o) pp2 |40

dog,

2
_[ 50 S
a/ \a dMidt_ S ) Zi,j,kGijk(t>(]\/1)2< s,
a a
R R

Here R, ,; could be either pomeron or reggeon

I 2 P: a,(0)=1+A R:a_(0)=0.5
3 do do
PP P:—’\’ ZA/M1+2A PP R:—N ZA/M2+4A
b b ( ) dMX S X ( ) dMX S X

8 different combinations

« ALICE: Kaidalov-Poghosyan model based on Gribov's Regge calculus.

A.B. Kaidalov and M.G. Poghosyan, Proc. Conf. on Elastic and Diffractive Scattering, (“Blois Workshop”,
CERN, June 2009:ArXiv:0909.5156)

24 June 2014 Diffraction physics with ALICE at the LHC 12



@j DIFFRACTIVE MASS DISTRIBUTIONS %

ALICE
x
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The shaded area around the black line is delimited by variation
of the KP model + 50% at the threshold and by Donnachie-
Landshoff parametrization. This variation is used for estimating

systematic uncertainties.
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j DATA SAMPLES AND MC GENERATORS %

ALICE

e pp data (Minimum Bias trigger) have been collected at three energies:

e Vs =0.9 TeV
e Vs =2.76 TeV
e Vs =7 TeV

7x106 events
23x106 events
75x106 events

 Two MC generators have been employed:

« PYTHIA6.421 (“Perugia-0”

« PHOJET1.12

tune) }

Modified to follow Kaidalov-Poghosyan
diffractive mass distribution

 The main difference between the two generators is the used model of
diffractive cluster fragmentation.

* The "inner" edge of the pseudorapidity distribution is relevant for this
study and it is reasonably well described by both PYTHIA6 and PHOJET.

=M= = 20 GeV g
3

| —— PHOJET 3
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MC TUNING %
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Eur. Phys. J. C (2013) 73:2456
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ALICE

Strategy:
« ADJUST SD and DD fractions in

PYTHIAG6 and PHOJET to bracket
the gap width distribution (for An>3)
In 2-arm events and to reproduce
1-arm/2-arm trigger ratios.
EVALUATE trigger efficiencies for
SD and non-single diffractive (NSD)
events to extract SD contribution to
Inelastic cross-section.

COMPUTE DD contribution to
Inelastic cross-section from adjusted
MC generators.

Diffraction physics with ALICE at the LHC 16



@j SD FRACTION %

ALICE
Vs (TeV) Ratio definition Ratio Side osp/OINEL
Per side Total
0.9 l-arm-L/2-arm 0.0576 4+ 0.0002 [-side 0.10 £ 0.02 0.21 £0.03
l-arm-R/2-arm 0.0906 £ 0.0003 R-side 0.11 £0.02
2.76 [-arm-L/2-arm 0.0543 4 0.0004 L-side 0.09 & 0.03 0.2070 02
l-arm-R/2-arm 0.0791 £ 0.0004 R-side 0.1 ljg:gg
7 l-arm-L/2-arm 0.0458 4+ 0.0001 L-side 0.107002 0.2010-04
[-arm-R/2-arm 0.0680 + 0.0001 R-side 0.101002
Y - J
Y Y
Uncorrected ratios Extracted fractions

After correction the L/R ratios become symmetric, as we expect from the
symmetry of the process.
All error are systematic, statistical errors are negligible.

B.Abelev et al (The ALICE Collaboration). Measurement of inelastic, single- and double-diffraction
crosssections in proton—proton collisions at the LHC with ALICE. Eur. Phys. J. C (2013) 73:2456
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j DD FRACTION

ALICE
Js (TeV) oDD /OINEL
0.9 0.11 £0.03
2.76 0.12 £ 0.05
0.05
7 0.12755,

All errors are systematic, statistical errors are negligible.

DD is defined as all NSD events with An>3, irrespective of generator
classification, and calculated from adjusted PYTHIA6 and PHOJET.

B.Abelev et al (The ALICE Collaboration). Measurement of inelastic, single- and double-diffraction
crosssections in proton—proton collisions at the LHC with ALICE. Eur. Phys. J. C (2013) 73:2456
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@j CENTRAL PRODUCTION (CP) %

ALICE

« The gap technique can be used to study gap-X-gap processes.
« We cannot know if scattered protons remain intact or break-up.
* There are three different possibilities to observe gap-X-gap processes.

dN
dy
>< ‘ gap HW gap \
y
>
dN

e ExclusiveCD P

« CD+ SD P

gap gap ‘ H

il
y

Without detection of outgoing protons all three processes are indistinguishable.

—
+ CD + DD p — a
=
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CENTRAL PRODUCTION (2)

®

ALICE

Mass of 2track double gap events, all tracks assumed to be pions

— Double gap

C 045l VO-FMD-SPD-TPC PP @\s =7 TeV
= Y e e I— No gap R
%} 004fF —— Double gaps f,(1270)" @
\ Q 0038F . f,(980)? % :
O gap *~...:'; D.DS; P (770) 5(:.4 l % ALICE Performance
‘g.ﬁ"i}?&: . x **'gH uﬁlﬁz %% % 13/04/2011
Q . ."~. p{ i .
g 0.025_ " #‘H’i%l $ %ﬁ +
k< 0.0155— + X x{;s +T I ﬂw
5 001 ﬁ’% W% »
5 0.005F ¥ »
Z ﬁ:ﬁ.l...l...l...l...l... B
04 06 08 1 12 14 16 18 2

Not corrected for efficiency and acceptance

« According to Regge theory, all contributions to CP die out with

Increasing energy, except pomeron-pomeron fusion.
 Enhancement of O++,2++,... resonances production and suppression of
other resonances production is expected in double-pomeron exchange.

24 June 2014
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j OBSERVED DOUBLE GAP RATE %

F.Reidt AIP Conf.Proc. 1523 (2012) 17 ALICE
pp, 1s=7 TeV

=

not corrected for detector

0.001 acceptance and efficiency
NDG —4
0.0008 l\__ﬁ_,—l —;Ea-%—m [ _ R,.= - :(7.63 +0.02 i0.87)><10
P ! i ‘ - AND

0.0006

[ —}— single run (stat. eor)  —|— period mean (stat. eror) Fraction of double gap events is
[ period mean (sys. eror) —}— combined mean (stat e uniform over various data taking

Rpg(V0-FMD-SPD Double Gap)

0.0004
ﬂ C I:I combined mean (sys. emor) pe”OdS.
06/09/2012 An=2.8 An=4.2
1
|||||||||||||||||||Il-lﬂl-lgl||':l|‘lgllll|-II|||||||>':."||::]3
116 118 120 122 124 126 128 130 132
systematic error estimated from the spread of the Run Number

period means, doesn't include detector effects

Next step is cross-section for double-gap events:
 reliable model is required to describe low-mass diffraction;
« correction for detector effects.
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HOW CAN WE DO BETTER?

ADC ~19m

New scintillator counters
covering acceptance holes
: i s b

L ¥ ‘- l' i \ ‘

ADA ~17m
24 June 2014 Diffraction physics with ALICE at the LHC



@J ADA AND ADC COMMISSIONING %

ALICE
(at -19.57 m) (at 17.00 m)
| v  FMD-L | FMD-R |
| o SPD ; |
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| i e — F——— — —

—7.0 —4.9 —3.7 —2 0 2 2.8 4.7 6.4 1

—3.4 —1.7 1.7 5.1

AD stands for ALICE Diffractive

* New detectors will cover a larger pseudorapidity range and lead to
Increased acceptance for low single- and double-diffractive masses.

e Sensitivity to low diffractive masses helps to reduce model-dependence
of diffractive measurements.

« We plan to start collecting data with these new detectors from the
beginning of LHC Run2.
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(present) (starting from LHC Run2)
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@j SUMMARY %

ALICE

 ALICE has measured the contributions of single- and double-diffractive
processes to the inelastic pp cross-section, using a pseudo-rapidity
gap technique.

* No strong energy dependence of these fractions is observed.

e The cross-sections of SD processes were obtained for diffractive
masses below 200 GeV/c?. As for the DD measurements, cross-
sections were obtained for events with gap width An>3.

* The obtained cross-sections are compared with other measurements
at lower energies and to predictions from current models. They are
found to be consistent with all of these, within uncertainties.

« Central production: work in progress. New results are expected soon.

 The commissioning of new scintillator counters — ADA and ADC — will
Increase the acceptance for low diffractive masses.

* \WWe plan to start collecting data with these new detectors from the
beginning of LHC RunZ2.
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