Recent BaBar highlights on B-meson physics

Yury Kolomensky
UC Berkeley/LBNL

For the BABAR Collaboration
XXX ${ }^{\text {th }}$ International Workshop
on High Energy Physics
Protvino, June 24, 2014

Recent Results from BABAR

- BaBar still produces a lot of results

531 published papers and counting

- Rare decays and symmetry violations: complementary to the LHC
- Most recent highlights:
- Probes of New Physics in Penguin Decays
- Lepton Number Violation
- CP Violation in $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$

Analysis Techniques at B Factories

- B decay data collected at $r(4 S)$ resonance
- Near threshold: spherically symmetric
- Largest background from "continuum" QED udsc production
- "Jetty" events
- Discriminate using topological "event shape" variables
- Measure in "off-resonance" data

Analysis Techniques at B Factories

- Multi-variate discriminating techniques common ${ }^{\circ}$ Fisher, Likelihood, BDT, ANN, ...
- Precise kinematic discrimination: m_{ES} and $\Delta \mathrm{E}$
- Multivariate max likelihood fits to extract parameters of interest
$m_{E S(B C)}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \quad \Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$

Example MVA

Flavor Changing Neutral Currents

- FCNC: precision test of the Standard Model
- For example $\mu \rightarrow \mathrm{e} \gamma$

Sensitive to lepton mass differences in SM
\square Heavy quark transitions: $b \rightarrow s \gamma$
Sensitive to effective quark mass differences
Rates and spectra: precision test of QCD
CP Asymmetry: sensitivity to New Physics

Semi-inclusive Measurement of $b \rightarrow s \gamma$

CP Asymmetry

arXiv:1406.0534, submitted to PRD
(Preliminary)

Semi-inclusive Measurement of $b \rightarrow s \gamma$

- Reconstruct $\mathrm{B} \rightarrow \mathrm{X}_{s} \gamma$ decays in 16 exclusive final
states

Final State

$$
\begin{aligned}
& \hline B^{+} \rightarrow K_{S} \pi^{+} \gamma \\
& B^{+} \rightarrow K^{+} \pi^{0} \gamma \\
& B^{0} \rightarrow K^{+} \pi^{-} \gamma \\
& B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma \\
& B^{+} \rightarrow K_{S} \pi^{+} \pi^{0} \gamma \\
& B^{+} \rightarrow K^{+} \pi^{0} \pi^{0} \gamma \\
& B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \gamma \\
& B^{+} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{+} \gamma \\
& B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} \gamma \\
& B^{+} \rightarrow K_{S} \pi^{+} \pi^{0} \pi^{0} \gamma \\
& B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} \gamma \\
& B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \pi^{0} \gamma \\
& B^{+} \rightarrow K^{+} \eta(\rightarrow \gamma \gamma) \gamma \\
& B^{0} \rightarrow K^{+} \eta(\rightarrow \gamma \gamma) \pi^{-} \gamma \\
& B^{+} \rightarrow K^{+} K^{-} K^{+} \gamma \\
& B^{0} \rightarrow K^{+} K^{-} K^{+} \pi^{-} \gamma
\end{aligned}
$$

Measure Direct CP Asymmetry:

$$
A_{C P}=\frac{\Gamma(b \rightarrow s \gamma)-\Gamma(\bar{b} \rightarrow \bar{s} \gamma)}{\Gamma(b \rightarrow s \gamma)+\Gamma(\bar{b} \rightarrow \bar{s} \gamma)}
$$

Dominated by long-distance effects in SM: prediction $0.6 \%<\mathrm{A}_{\mathrm{CP}}<2.8 \%$
NP loop effects can enhance ACP up to 15% and induce $<10 \%$ difference between
B^{+}and B^{0}
NP B704, 56; PRL 73, 2809; PRD 60, 014003

Semi-inclusive $b \rightarrow s \gamma$: Results

B Sample	$A_{\text {peak }}$	D	$A_{\text {det }}$	$A_{C P}$
All B Charged B Neutral B	$\begin{aligned} & \hline+(0.33 \pm 1.87) \% \\ & +(3.14 \pm 2.86) \% \\ & -(2.48 \pm 2.47) \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \pm 0.88 \% \\ & \pm 0.80 \% \\ & \pm 0.97 \% \end{aligned}$	$\begin{aligned} & -(1.40 \pm 0.49 \pm 0 \\ & -(1.09 \pm 0.67 \pm 0 \\ & -(1.74 \pm 0.72 \pm 0 \end{aligned}$	$\begin{aligned} & \hline+(1.73 \pm 1.93 \pm 1.02) \% \\ & +(4.23 \pm 2.93 \pm 0.95) \% \\ & -(0.74 \pm 2.57 \pm 1.10) \% \end{aligned}$
$\begin{aligned} & \mathrm{A}_{\mathrm{CP}}=(1.7 \pm 1.9 \pm 1.0) \% \\ & \Delta \mathrm{~A}_{\mathrm{Xs} \gamma}=(5.0 \pm 3.9 \pm 1.5) \% \end{aligned}$			arXiv:1406.0534 (Preliminary)	$\Delta A_{X_{s} \gamma}=A_{X_{s}^{-} \gamma}-A_{X_{s}^{0} \gamma}$ First Measurement! In agreement with SM

Systematics dominated by measurements of bkg dilution D and detector asymmetry $\mathrm{A}_{\text {det }}$

$\Delta \mathrm{A}_{\mathrm{Xs} \gamma}$ provides limits on a poorly constrained Wilson coefficient $\mathrm{C}_{8 \mathrm{~g}}$:

$$
\mathfrak{J}\left(C_{8 \mathrm{~g}} / C_{7 \gamma}\right) \in[-1.64,6.52] @ 90 \% \mathrm{CL}
$$

PRL 106, 141801; JHEP 1204008

$B \rightarrow \mathrm{X}_{s} I^{+-}$Branching Fraction and

Direct CP Asymmetry

PRL 112, 211902 (2014)

Electroweak Penguins: $\mathrm{B} \rightarrow \mathrm{X}$ sll

- FCNC Rare decays (BF ~ 10^{-6})
- Sensitive to TeV-scale physics, e.g. SUSY
- Direct CP asymmetry A_{CP} suppressed in SM to $\sim 1 \%$ level (PRD 54, 882)
- NP may enhance the value, especially at high q ${ }^{2}$ (c.f. PRD 79, 034017)
- Existing puzzles
© Large isospin asymmetries
(7) Forward-backward asymmetries

LHCb angular analysis (L. Pescatore)

$B \rightarrow X_{s ̣} I^{+} I^{-}$

- Semi-inclusive measurement using the sum of 20 exclusively reconstructed modes
- MC-assisted extrapolation to the total rate

About 70% of inclusive rate with $\mathrm{M}(\mathrm{Xs})<1.8 \mathrm{GeV}$ reconstructed
Complementary to (and competitive with) LHCb

- Final states:
- 0 pions: $\mathrm{K}^{+}, \mathrm{K}_{\text {s }}$
- 1 pion: $\mathrm{K}^{+} \pi^{0}, \mathrm{~K}^{+} \pi^{-}, \mathrm{K}_{s} \pi^{0}, \mathrm{~K}_{s} \pi^{+}$
- 2 pions: $\mathrm{K}^{+} \pi^{-} \pi^{0}, \mathrm{~K}^{+} \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}, \mathrm{~K}_{s} \pi^{+} \pi^{-}$

CP-symmetric modes not used in measurement of A_{CP}

- Well-identified leptons ($1=\mathrm{e}, \mu$)
- Extract results by likelihood fit to distribution of kinematic variable $m_{E S}$ and event topology likelihood ratio L_{R}

$\left.B \rightarrow X_{s} I^{+}\right|^{-}$: Results

Perturbative region: $1<\mathrm{q}^{2}<6 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& X_{s} \mu^{+} \mu^{-} 0.66_{-0.76}^{+0.82+0.34} \pm 0.07 \\
& X_{s} e^{+} e^{-} 1.93_{-0.45}^{+0.47}+0.216 \pm 0.18 \times 10^{-6} \\
& \left.X_{s} \ell^{+} \ell^{-} 1.60_{-0.39-0.13}^{+0.41+0.17} \pm 0.18\right]
\end{aligned}
$$

(Average $\mathrm{X}_{\mathrm{s}} \mathrm{I}^{+} \mathrm{l}^{-}$consistent with SM)
Above $\psi(2 S)$:

$$
\left[\begin{array}{cc}
X_{s} \mu^{+} \mu^{-} & 0.60_{-0.29-0.04}^{+0.31+0.05} \pm 0.00 \\
X_{s} e^{+} e^{-} & 0.56_{-0.18-0.03}^{+0.19+03} \pm 0.00 \\
X_{s} \ell^{+} \ell^{-} & 0.57_{-0.15-0.02}^{+0.16+0.03} \pm 0.00
\end{array}\right\} \times 10^{-6}
$$

About 2σ above SM expectation $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \mu \mu\right)_{\text {high }}^{\ddot{ }}=\left(2.40_{-0.62}^{+0.69}\right) \times 10^{-7}$ T. Huber, T. Hurth and E. Lunghi, Nucl. Phys. B 802, 40 (2008).
Opposite direction compared to evidence for deviation from SM observed at LHCb (see L. Pescatore's talk and backup)

$B \rightarrow X_{s} I^{+} I^{-}$: Results

$$
A_{C P}=\frac{B F_{B}-B F_{\bar{B}}}{B F_{B}+B F_{\bar{B}}}
$$

Measure $A_{C P}$ in q^{2} bins, for e, μ final states separately and on average

No model-dependent extrapolation of signal rates for $A_{C P}$
$\mathrm{A}_{\mathrm{CP}}\left(\mathrm{q}^{2}>0.1 \mathrm{GeV}^{2}\right)=0.04 \pm 0.11$ (stat) ± 0.01 (syst)
(in agreement with the Standard Model)

Time-dependent CP Asymmetry in $B \rightarrow K \pi \pi \gamma$

(Preliminary)

CP Asymmetry in $\mathrm{B} \rightarrow \mathrm{K} \pi \pi \gamma$

$$
\begin{aligned}
\mathcal{A}_{C P}(\Delta t) & =\frac{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f_{C P} \gamma\right)-\Gamma\left(B^{0}(\Delta t) \rightarrow f_{C P} \gamma\right)}{\Gamma\left(\bar{B}^{0}(\Delta t) \rightarrow f_{C P} \gamma\right)+\Gamma\left(B^{0}(\Delta t) \rightarrow f_{C P} \gamma\right)} \\
& =\mathcal{S}_{f_{C P}} \sin \left(\Delta m_{d} \Delta t\right)-\mathcal{C}_{f_{C P}} \cos \left(\Delta m_{d} \Delta t\right)
\end{aligned}
$$

SM prediction $S_{f_{C P}}=m_{s} / m_{b}=0.02$
Non-zero asymmetry is a sign of new physics effects (e.g. RH currents) Complementary to photon polarization measurements (c.f. LHCb)

Experimental technique: time-dependent CP analysis of CP eigenstate $\mathrm{B} 0 \rightarrow \mathrm{~K}_{s}{ }^{0} \rho \gamma$
Complication: dilution from irreducible background of non-CP eigenstate $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*}\left[\mathrm{Ks}^{0} \pi\right] \pi \gamma$. Measure dilution from amplitude analysis of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+} \gamma$

CP eigenstate $\mathrm{B} 0 \rightarrow \mathrm{~K}_{S^{0}} \rho \gamma$

Non-CP eigenstate $\mathrm{B} 0 \rightarrow \mathrm{~K}^{*}\left[\mathrm{~K}^{0} \pi\right] \pi \gamma$

CP Asymmetry in $\mathrm{B} \rightarrow K \pi \pi \gamma$

Max-likelihood fit to 4 variables: $\mathrm{m}_{\mathrm{ES}}, \Delta E$, event shape Fisher, Δt

Branching Fraction measurement:

$$
\mathcal{B}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-} \gamma\right)=\left(23.9 \pm 2.4_{-1.9}^{+1.6}\right) \times 10^{-6}
$$

CP Observables:

$$
\begin{aligned}
& \left.\mathcal{S}_{K_{S}^{0} \pi^{+} \pi^{-} \gamma}=0.14 \pm 0.25 \text { (stat.) }\right)_{-0.03}^{+0.04} \text { (syst.) } \\
& \mathcal{C}_{K_{S}^{0} \pi^{+} \pi^{-} \gamma}=-0.39 \pm 0.20 \text { (stat.) } \pm 0.05 \text { (syst.) }
\end{aligned}
$$

Correcting for dilution:

$$
\mathcal{S}_{K_{S}^{0} \rho \gamma}=0.25 \pm 0.46(\text { stat. })_{-0.06}^{+0.08} \text { (syst.) }
$$

Search For Lepton-Number Violating

Processes in

$$
\mathrm{B}^{+} \rightarrow \mathrm{h}-1+\mathrm{l}^{+}
$$

PRD 89, 011102(R) (2014)

Lepton Number Violation

- Nuclear Physics: Neutrinoless double-beta decay $0 v \beta \beta$ probes Majorana nature of neutrinos
- LNV in B decays: another probe
\square Access to $2^{\text {nd }}$ and $3^{\text {rd }}$ (and possibly $4^{\text {th }}$) generation
Different effective neutrino mass
Additional Majorana phases accessible
Or new physics in $2^{\text {nd }}$ and $3^{\text {rd }}$ generation

- 14 decay channels

- Multivariate background suppression (BDT)
- Maximum-likelihood fit to 3 (or 4) variables $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}, \mathrm{BDT}$ [and $\mathrm{D} / \mathrm{K}^{*} / \rho$ mass]
No significant signal observed

LNV: $\mathrm{B}^{+} \rightarrow \mathrm{h}-1+{ }^{+}+$Results

Dalitz Analysis and CP Asymmetry in $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$

To be submitted to PRD
 (Preliminary)

Dalitz and CPAnalysis in $\mathrm{B}^{+} \rightarrow \mathrm{K}_{s} \pi^{+} \pi^{0}$

- Dalitz analysis can be used to measure CP angle γ
- Requires full amplitude and CP analysis of $\mathrm{K}^{*} \pi$
 system
- K π puzzle: isospin asymmetry $\Delta \mathrm{A}_{\mathrm{CP}}$ in $\mathrm{K} \pi$ system
\square Look for insights in $\mathrm{K}^{*} \pi$

$$
\Delta A_{\mathrm{CP}}=A_{\mathrm{CP}}\left(K^{*+} \pi^{0}\right)-A_{\mathrm{CP}}\left(K^{*+} \pi^{-}\right)
$$

$$
A_{\mathrm{CP}}\left(B^{+} \rightarrow K^{*+} \pi^{0}\right)=-0.06 \pm 0.24
$$

$$
\text { BaBar: Phys. Rev. D84, } 092007 \text { (2011) }
$$

$A_{C P}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)=-0.23 \pm 0.06$ HFAG, arXiv:1207.1158 [hep-ex]

$\mathrm{B}^{+} \rightarrow \mathrm{K}_{s} \pi^{+} \pi^{0}$ Analysis

- Extract event yields from max-likelihood fit to 3 variables
$\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}, \mathrm{BDT}$
1014 ± 63 signal events over 31 k background
- Dalitz analysis to measure individual contributions

Resonant contributions, strong and CP phases

$\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$ Results

First measurements

BABAR Preliminary

Decay channel	$\mathcal{B}\left(10^{-6}\right)$	
$K^{0} \pi^{+} \pi^{0}$	$45.9 \pm 2.6 \pm 3.0 \pm 8.6$	$0.07 \pm 0.05 \pm 0.03 \pm 0.04$
		$A_{C P}$
$K^{* 0}(892) \pi^{+}$	$14.6 \pm 2.4 \pm 1.3 \pm 0.5$	$-0.12 \pm 0.21 \pm 0.08 \pm 0.11$
$K^{*+}(892) \pi^{0}$	$9.2 \pm 1.3 \pm 0.6 \pm 0.5$	$-0.52 \pm 0.14 \pm 0.04 \pm 0.04$
$K_{0}^{* 0}(1430) \pi^{+}$	$50.0 \pm 4.8 \pm 6.0 \pm 4.0$	$0.14 \pm 0.10 \pm 0.04 \pm 0.14$
$K_{0}^{*+}(1430) \pi^{0}$	$17.2 \pm 2.4 \pm 1.5 \pm 1.8$	$0.26 \pm 0.12 \pm 0.08 \pm 0.12$
$\rho^{+}(770) K^{0}$	$9.4 \pm 1.6 \pm 1.0 \pm 2.6$	$0.21 \pm 0.19 \pm 0.07 \pm 0.30$
	Stat, syst, and model-dependent uncertainties	

5.4σ significance
(first observation)
3.4σ significance (first evidence)

$\mathrm{B} \rightarrow \mathrm{K}^{(*)} \pi$ Results

Summary

- Unique sensitivity to new physics in B decays
- Complementary to LHC in SUSY parameter space
- In case of discoveries, shed light on flavor structure of New Physics
- Complementary to other rare decays and precision measurements
Muon $\mathrm{g}-2, \mu \rightarrow \mathrm{e}$ conversion, $\mu \rightarrow \mathrm{e} \gamma, 0 v \beta \beta$
- High-multiplicity, inclusive and semi-inclusive final states accessible at B Factories
- Few puzzles and smoking guns
- Belle-II can improve sensitivities by 1-2 orders of magnitude

Backup

Rare B Decays

- Powerful (indirect) probe of New Physics
\square (Old) smoking gun: $\mathrm{B}^{+} \rightarrow \tau^{+} v$, sensitive to charged Higgs

$\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{l}^{2}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}$
$\mathcal{B}_{S M}\left(B^{+} \rightarrow \tau^{+} \nu\right)=(0.80 \pm 0.20) \times 10^{-4}$
(using $\mathrm{f}_{\mathrm{B}}=190 \pm 13 \mathrm{MeV}$ and $\mathrm{V}_{\mathrm{ub}}=(3.5 \pm 0.4) \times 10^{-3}$
Charged Higgs contribution:

$$
\begin{gathered}
\mathcal{B}(B \rightarrow \tau \nu)=\mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}} \times r_{H} \\
r_{H}=\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
\end{gathered}
$$

$B^{+} \rightarrow \tau^{+} v$: Hadronic Tag Technique

- Reconstruct "the tag B" completely efficiency 0.28%
- Reconstruct leptonic and hadronic τ decay

Hadronic tag

Signal decay

$$
B^{-} \rightarrow D^{(*) 0} X^{-}
$$

$$
\begin{aligned}
D^{0} \rightarrow & K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{-} \pi^{+} \\
& K_{s}^{0} \pi^{0}, K_{s}^{0} \pi^{+} \pi^{-}, K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} \\
& K^{+} K^{-}, \pi^{+} \pi^{-} \\
D^{* 0} \rightarrow & D^{0} \pi^{0}, D^{0} \gamma
\end{aligned}
$$

$$
\begin{gathered}
X=n \pi^{ \pm}+m K+p \pi^{0}+q K^{0} \\
n+m \leq 5, \quad m, p, q \leq 2
\end{gathered}
$$

$B \rightarrow \tau \nu \quad[P R D-R C 88,031102$ (2013)]

- Events selected on the recoil of fully reconstructed $B \rightarrow D^{\left({ }^{(}\right)} X, J / \psi X$ with Tag Efficiency $=0.28 \%$

- Events reconstructed in the $e^{+} v v, \mu^{+} v v$, $\pi^{+} v, \rho^{+}\left(\pi^{+} \pi^{0}\right) v$ channels requiring a single charged track
- BKG from continuum \& combinatorial reduced by means of a likelihood ratio exploiting topological variables.
- From $E_{\text {Extra }}$ fit:
$B R(B \rightarrow \tau v) \approx\left(1.83_{-0.49}^{+0.53}(\right.$ stat $) \pm 0.24($ syst $\left.)\right) 10^{-4}($ significance $3.8 \sigma)$ - Exceeds the SM prediction by $2.4 \sigma(1.6 \sigma)$ using $V_{u b}$ from the exclusive (inclusive) charmless semileptonic B decays

- Constraints on 2HDM type II model

- Stringent limits set in the $\left(\tan \beta, m_{H+}\right)$ plane:

$B \rightarrow D^{(*)} \tau \nu$

- Tree level decay less model dependent, several observables sensitive to NP

- BRs for the different lepton species are predicted to be different in the SM:

$$
\begin{aligned}
\mathcal{R}\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)} & \mathcal{R}(D)_{\mathrm{SM}}=0.297 \pm 0.017 \\
\mathcal{R}\left(D^{*}\right)_{\mathrm{SM}} & =0.252 \pm 0.003
\end{aligned}
$$

\Rightarrow Theoretical \& experimental uncertainties ($V_{c b}$, Form Factors, Particle identification, reconstruction effects) reduced in the BRs ratio
$\Rightarrow D, D^{*}$ affected differently by charged Higgs exchange (different helicity)

- $D^{(4)}$ l events selected on the recoil of reconstructed hadronic B decays
- Use only leptoníc τ decays
- Yields extracted by means of a simultaneous fit to:
\Rightarrow Lepton momentum in the B rest frame
$\Rightarrow M_{\text {miss }}^{2}=\left(P_{\text {ete- }}-P_{\text {Btag }}-P_{D()^{(H)}}-P_{P}\right)^{2}$

$$
\begin{aligned}
& R(D)=0.440 \pm 0.058 \pm 0.042 \\
& R\left(D^{*}\right) \approx 0.332 \pm 0.024 \pm 0.018
\end{aligned}
$$

- Systematics from BKG PDF shape

$B \rightarrow \int^{(*)}$ [U $[\operatorname{PRD} 88,072012(2013)]$

- Results above the SM prediction by 3.4σ SM

- Adding Belle results:
[PRL 99 191807, PRD 82072005]
Deviation from SM prediction at 4.8σ

Belle \& BaBar	Deviation
$\mathcal{R}(D)$	2.4σ
$\mathcal{R}\left(D^{*}\right)$	3.8σ
Combined	4.8σ

Amplitude Analysis of $\mathrm{B}^{+} \rightarrow \mathrm{K} \pi \pi \gamma$

- Extraction of the dilution from amplítudes of intermediate states decaying to $K \pi$ and $\pi \pi$ - Full amplitude analysis in the $m(K \pi)-m(\pi \pi)$ difficult due to small statistics
\Rightarrow Perform a ID fit to $\mathrm{m}(\mathrm{K} \pi)$ using as inputs the BRs obtained from the $m(K \pi \pi)$ fit

$$
\mathcal{D}_{K_{S}^{0} \rho \gamma} \approx F\left(A_{\rho}, A_{k^{*}}, A_{(K \pi) S \text {-wave }}\right) \approx 0.549_{-0.094}^{+0.096}
$$

Amplitude Analysis in $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$

BaBar Preliminary

Decay channel	$\mathcal{B}\left(10^{-6}\right)$
$K^{0} \pi^{+} \pi^{0}$	$45.9 \pm 2.6 \pm 3.0 \pm 8.6$
$K^{* 0}(892) \pi^{+}$	$14.6 \pm 2.4 \pm 1.3 \pm 0.5$
$K^{*+}(892) \pi^{0}$	$9.2 \pm 1.3 \pm 0.6 \pm 0.5$
$K_{0}^{* 0}(1430) \pi^{+}$	$50.0 \pm 4.8 \pm 6.0 \pm 4.0$
$K_{0}^{*+}(1430) \pi^{0}$	$17.2 \pm 2.4 \pm 1.5 \pm 1.8$
$\rho^{+}(770) K^{0}$	$9.4 \pm 1.6 \pm 1.0 \pm 2.6$

First uncertainty is statistical, second systematic, and third due to the signal model
) BaBar preliminary

Relative phases $\left({ }^{\circ}\right)$

BaBar Pre\\|inninary	
Reference amplitude Resonances	Relative phases $\left(^{\circ} \mathrm{O}\right.$ $K^{* 0}(892) \pi^{+} K^{*+}(892) \pi^{0}(K \pi)_{0}^{* 0} \pi^{+}(K \pi)_{0}^{*+} \pi^{0} \rho^{+}(770) K_{S}^{0}$
$B^{+} \rightarrow K^{* 0}(892) \pi^{+}$	$0-96 \pm 44-174 \pm 11-91 \pm 43-122 \pm 38$
$B^{+} \rightarrow K^{*+}(892) \pi^{0}$	$-\quad 0 \quad-90 \pm 42 \quad 6 \pm 10-27 \pm 26$
$B^{+} \rightarrow(K \pi)_{0}^{* 0} \pi^{+}$	$0 \quad 95 \pm 42 \quad 64 \pm 37$
$B^{+} \rightarrow(K \pi)_{0}^{*+} \pi^{0}$	- $0-32 \pm 25$
$B^{+} \rightarrow \rho^{+}(770) K_{S}^{0}$	0
Uncertainty is statistical only	

BaBar Preliminary

Implications from B $\rightarrow \mathbf{X}_{\mathrm{s}}$ I+l- Partial BFs on LHCb "anomaly"

- A recent LHCb paper essentially claims a ~ 4 sigma observation of a non-SM signal from one of an ensemble of 24 quasi-independent observables
- PRL 111, 191801 (2013)
- There are, however, a number of caveats
- ~4 sigma is a local significance; globally, assuming all 24 observables are independent, there is ~ 1 in 200 chance that this is a statistical fluctuation
- However, all 24 observables are not, in fact, independent and are tied together by the transversity amplitudes which underlie the choice of angular projections here, $\mathrm{P}^{\prime} 4$ and $\mathrm{P}^{\prime} 5$
- This implicit correlation also requires that other related observables, which are also dependent on the same underlying Wilson coefficients and/or transversity amplitudes, show an effect (albeit possibly smaller), but this is not seen in LHCb's AFB analysis or other experiments' angular analyses or, more importantly, in the form-factor free inclusive B->Xsll analysis
- Many theorists are "explaining" this singular LHCb result as a BSM contribution to C9, $\delta C 9$
- A few are also exploring the implications of this on other RadPen observables
- The next page shows change in $B->X$ sll $B F$ if $\delta C 9$ is interpreted in the context of an MFV scenario

Figure 1: Measured values of P_{4}^{\prime} and P_{5}^{\prime} (black points) compared with SM predictions from Ref. [11] (blue bands).

Implications from $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}}+\mid-$ - Partial BFs on LHCb "anomaly"

