Recent BaBar highlights on B-meson physics

Yury Kolomensky UC Berkeley/LBNL

For the BABAR Collaboration

XXXth International Workshop on High Energy Physics Protvino, June 24, 2014

Recent Results from BABAR

BaBar still produces a lot of results

531 published papers and counting

- Rare decays and symmetry violations: complementary to the LHC
- Most recent highlights:
 - Probes of New Physics in Penguin Decays
 - Lepton Number Violation
 - □ CP Violation in B⁺ \rightarrow K_s π ⁺ π ⁰

Analysis Techniques at B Factories

- B decay data collected at $\Upsilon(4S)$ resonance
 - Near threshold: spherically symmetric
- Largest background from "continuum" QED udsc production
 - □ "Jetty" events
- Discriminate using topological "event shape" variables
 - Measure in "off-resonance" data

Analysis Techniques at B Factories

- Multi-variate discriminating techniques common
 - Fisher, Likelihood, BDT, ANN, ...
- Precise kinematic discrimination: m_{ES} and ΔE
- Multivariate max likelihood fits to extract parameters of interest

Flavor Changing Neutral Currents

- FCNC: precision test of the Standard Model
 - □ For example μ →eγ
 - Sensitive to lepton mass differences in SM
 - □ Heavy quark transitions: b→sγ
 - Sensitive to effective quark mass differences
 - Rates and spectra: precision test of QCD
 - © CP Asymmetry: sensitivity to New Physics

Semi-inclusive Measurement of $b \rightarrow s \gamma$ CP Asymmetry

arXiv:1406.0534, submitted to PRD (Preliminary)

Semi-inclusive Measurement of b→sγ

• Reconstruct $B \rightarrow X_s \gamma$ decays in 16 exclusive final

states

Final State

Measure Direct CP Asymmetry:

$$A_{CP} = \frac{\Gamma(b \to s\gamma) - \Gamma(\bar{b} \to \bar{s}\gamma)}{\Gamma(b \to s\gamma) + \Gamma(\bar{b} \to \bar{s}\gamma)}$$

Dominated by long-distance effects in SM: prediction 0.6%<A_{CP}<2.8%

NP loop effects can enhance ACP up to 15% and induce <10% difference between B+ and B⁰

NP B704, 56; PRL 73, 2809; PRD 60, 014003

Semi-inclusive b→sy: Results

B Sample	$A_{ m peak}$	D	$A_{ m det}$	A_{CP}
_	$+(3.14 \pm 2.86)\%$	$\pm 0.80\%$	$-(1.40 \pm 0.49 \pm 0.51)\%$ $-(1.09 \pm 0.67 \pm 0.51)\%$ $-(1.74 \pm 0.72 \pm 0.51)\%$	

$$A_{CP} = (1.7\pm1.9\pm1.0)\%$$

 $\Delta A_{Xs\gamma} = (5.0\pm3.9\pm1.5)\%$

arXiv:1406.0534 (Preliminary)

$$\Delta A_{X_s\gamma} = A_{X_s^-\gamma} - A_{X_s^0\gamma}$$

First Measurement!
In agreement with SM

Systematics dominated by measurements of bkg dilution D and detector asymmetry A_{det}

 $\Delta A_{Xs\gamma}$ provides limits on a poorly constrained Wilson coefficient C_{8g} :

$$\Im(C_{8g}/C_{7y}) \in [-1.64, 6.52] \otimes 90\%$$

PRL 106, 141801; JHEP 1204 008

$B \rightarrow X_s \ l^+ l^-$ Branching Fraction and Direct CP Asymmetry

PRL 112, 211902 (2014)

Electroweak Penguins: $B \rightarrow X_s ll$

- FCNC Rare decays (BF $\sim 10^{-6}$)
- Sensitive to TeV-scale physics,
 e.g. SUSY
 - □ Direct CP asymmetry A_{CP} suppressed in SM to ~1% level (PRD **54**, 882)
 - NP may enhance the value,
 especially at high q² (c.f. PRD 79, 034017)
- Existing puzzles
 - Large isospin asymmetries
 - Forward-backward asymmetries
 - ** LHCb angular analysis (L. Pescatore)

$B \rightarrow X_s |^+|^-$

- Semi-inclusive measurement using the sum of 20 exclusively reconstructed modes
 - MC-assisted extrapolation to the total rate
 - About 70% of inclusive rate with M(Xs)<1.8 GeV reconstructed
 - © Complementary to (and competitive with) LHCb
- Final states:
 - \Box 0 pions: K^+ , K_s
 - \Box 1 pion: $K^+\pi^0$, $K^+\pi^-$, $K_s\pi^0$, $K_s\pi^+$
 - \square 2 pions: $K^+\pi^-\pi^0$, $K^+\pi^+\pi^-$, $K_s\pi^+\pi^0$, $K_s\pi^+\pi^-$
 - © CP-symmetric modes not used in measurement of A_{CP}
- Well-identified leptons ($l=e,\mu$)
- Extract results by likelihood fit to distribution of kinematic variable m_{ES} and event topology likelihood ratio L_R

$B \rightarrow X_s \mid^+\mid^-$: Results

Perturbative region: 1<q²<6 GeV²

$$X_s \mu^+ \mu^- 0.66^{+0.82}_{-0.76}^{+0.82}_{-0.24}^{+0.30} \pm 0.07$$

 $X_s e^+ e^- 1.93^{+0.47}_{-0.45}^{+0.21}_{-0.16}^{+0.18} \pm 0.18$
 $X_s \ell^+ \ell^- 1.60^{+0.41}_{-0.39}^{+0.41}_{-0.13}^{+0.17}_{-0.18}^{+0.18}$

(Average X_sl⁺l⁻ consistent with SM)

Above $\psi(2S)$:

$$X_s \mu^+ \mu^- \quad 0.60^{+0.31}_{-0.29} {}^{+0.05}_{-0.04} \pm 0.00
 X_s e^+ e^- \quad 0.56^{+0.19}_{-0.18} {}^{+0.03}_{-0.03} \pm 0.00
 X_s \ell^+ \ell^- \quad 0.57^{+0.16}_{-0.15} {}^{+0.03}_{-0.02} \pm 0.00$$

About 2σ above SM expectation

$$\mathcal{B}(\bar{B} \to X_s \mu \mu)_{\text{high}} = (2.40^{+0.69}_{-0.62}) \times 10^{-7}$$

T. Huber, T. Hurth and E. Lunghi, Nucl. Phys. B 802, 40 (2008).

Opposite direction compared to evidence for deviation from SM observed at LHCb (see L. Pescatore's talk and backup)

$B \rightarrow X_s \mid \uparrow \mid \bar{} : Results$

$$A_{CP} = \frac{BF_B - BF_{\bar{B}}}{BF_B + BF_{\bar{B}}}$$

Measure A_{CP} in q^2 bins, for e,μ final states separately and on average

No model-dependent extrapolation of signal rates for A_{CP}

 $A_{CP} (q^2 > 0.1 \text{ GeV}^2) = 0.04 \pm 0.11 \text{ (stat)} \pm 0.01 \text{ (syst)}$

(in agreement with the Standard Model)

Time-dependent CP Asymmetry in $B \rightarrow K\pi\pi\gamma$

(Preliminary)

CP Asymmetry in $B \rightarrow K\pi\pi\gamma$

$$\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) - \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) + \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}$$
$$= \mathcal{S}_{f_{CP}} \sin(\Delta m_{d}\Delta t) - \mathcal{C}_{f_{CP}} \cos(\Delta m_{d}\Delta t)$$

SM prediction $S_{f_{CP}} = m_s/m_b = 0.02$

Non-zero asymmetry is a sign of new physics effects (e.g. RH currents)

Complementary to photon polarization measurements (c.f. LHCb)

(Δt is the proper time difference between B decays)

Experimental technique: time-dependent CP analysis of CP eigenstate $B0 \rightarrow K_S^0 \rho \gamma$

Complication: dilution from irreducible background of non-CP eigenstate $B^0 \rightarrow K^*[K_S^0\pi]\pi\gamma$. Measure dilution from amplitude analysis of $B^+ \rightarrow K^+\pi^-\pi^+\gamma$

CP eigenstate $B0 \rightarrow K_S^0 \rho \gamma$

Non-CP eigenstate $B0 \rightarrow K^*[K_S^0\pi]\pi\gamma$

Events/(0.533 ps)

CP Asymmetry in $B \rightarrow K\pi\pi\gamma$

Max-likelihood fit to 4 variables: m_{ES} , ΔE , event shape Fisher, Δt

Branching Fraction measurement:

$$\mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \gamma) = (23.9 \pm 2.4^{+1.6}_{-1.9}) \times 10^{-6}$$

CP Observables:

$$S_{K_S^0 \pi^+ \pi^- \gamma} = 0.14 \pm 0.25 \text{(stat.)}_{-0.03}^{+0.04} \text{(syst.)} ,$$

$$C_{K_S^0 \pi^+ \pi^- \gamma} = -0.39 \pm 0.20 \text{(stat.)} \pm 0.05 \text{(syst.)} ,$$

Correcting for dilution:

$$S_{K_S^0 \rho \gamma} = 0.25 \pm 0.46 \text{(stat.)}_{-0.06}^{+0.08} \text{(syst.)}$$

Search For Lepton-Number Violating Processes in

$$B+\rightarrow h-l+l+$$

PRD 89, 011102(R) (2014)

Lepton Number Violation

- Nuclear Physics: Neutrinoless double-beta decay 0νββ probes Majorana nature of neutrinos
- LNV in B decays: another probe
 - □ Access to 2nd and 3rd (and possibly 4th) generation
 - Different effective neutrino mass
 - Additional Majorana phases accessible
 - Or new physics in 2nd and 3rd generation

LNV: B+→h-l+l+

- 14 decay channels
- Multivariate background suppression (BDT)
- Maximum-likelihood fit to 3 (or 4) variables

 \mathfrak{P} m_{ES}, Δ E, BDT [and D/K*/ ρ mass]

No significant signal observed

LNV: B+->h-1+1+ Results

Dalitz Analysis and CP Asymmetry in

$$B^+ \rightarrow K_s \pi^+ \pi^0$$

To be submitted to PRD (Preliminary)

- Dalitz analysis can be used to measure CP angle γ
 - □ Requires full amplitude and CP analysis of $K^*\pi$ system
- $K\pi$ puzzle: isospin asymmetry ΔA_{CP} in $K\pi$ system
 - □ Look for insights in $K^*\pi$

Phys. Rev. **D74**, 051301 (2006) Phys. Rev. **D75**, 014002 (2007)

$$\Delta A_{\rm CP} = A_{\rm CP} (K^{*+} \pi^0) - A_{\rm CP} (K^{*+} \pi^-)$$

$$A_{\rm CP} \left(B^+ \to K^{*+} \pi^0 \right) = -0.06 \pm 0.24$$

BaBar: Phys. Rev. **D84**, 092007 (2011)

$$A_{CP}(B^0 \to K^{*+}\pi^-) = -0.23 \pm 0.06$$

HFAG, arXiv:1207.1158 [hep-ex]

$B^+ \rightarrow K_s \pi^+ \pi^0$ Analysis

- Extract event yields from max-likelihood fit to 3 variables
 - \mathfrak{F} m_{ES}, Δ E, BDT
 - 1014±63 signal events over 31k background
- Dalitz analysis to measure individual contributions
 - Resonant contributions, strong and CP phases

$B^+ \rightarrow K_s \pi^+ \pi^0$ Results

First measurements

BABAR Preliminary

Decay channel	$\mathcal{B}\left(10^{-6}\right)$	A_{CP}
$K^0\pi^+\pi^0$	$45.9 \pm 2.6 \pm 3.0 \pm 8.6$	$0.07 \pm 0.05 \pm 0.03 \pm 0.04$
$K^{*0}(892)\pi^+$	$14.6 \pm 2.4 \pm 1.3 \pm 0.5$	$-0.12 \pm 0.21 \pm 0.08 \pm 0.11$
$K^{*+}(892)\pi^0$	$9.2 \pm 1.3 \pm 0.6 \pm 0.5$	$-0.52 \pm 0.14 \pm 0.04 \pm 0.04$
$K_0^{*0}(1430)\pi^+$	$50.0 \pm 4.8 \pm 6.0 \pm 4.0$	$0.14 \pm 0.10 \pm 0.04 \pm 0.14$
$K_0^{*+}(1430)\pi^0$	$17.2 \pm 2.4 \pm 1.5 \pm 1.8$	$0.26 \pm 0.12 \pm 0.08 \pm 0.12$
$\rho^{+}(770)K^{0}$	$9.4 \pm 1.6 \pm 1.0 \pm 2.6$	$0.21 \pm 0.19 \pm 0.07 \pm 0.30$
· · · · · · · · · · · · · · · · · · ·		

Stat, syst, and model-dependent uncertainties

 5.4σ significance (first observation)

 3.4σ significance (first evidence)

$B \rightarrow K^{(*)}\pi$ Results

Summary

- Unique sensitivity to new physics in B decays
 - Complementary to LHC in SUSY parameter space
 - □ In case of discoveries, shed light on flavor structure of New Physics
 - Complementary to other rare decays and precision measurements
- High-multiplicity, inclusive and semi-inclusive final states accessible at B Factories
- Few puzzles and smoking guns
 - Belle-II can improve sensitivities by 1-2 orders of magnitude

Backup

Rare B Decays

- Powerful (indirect) probe of New Physics
 - □ (Old) smoking gun: B+→τ+ν, sensitive to charged Higgs

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$\mathcal{B}_{SM}(B^+ \to \tau^+ \nu) = (0.80 \pm 0.20) \times 10^{-4}$$

(using f_B=190±13 MeV and V_{ub}=(3.5±0.4)×10⁻³

Charged Higgs contribution:

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$$
$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$$

$B^+ \rightarrow \tau^+ \nu$: Hadronic Tag Technique

- Reconstruct "the tag
 B" completely

 efficiency 0.28%
- Reconstruct leptonic and hadronic τ decay modes (~70% BF)
- Key discriminant: unassociated neutral energy $E_{\rm extra}$
 - □ Look for excess of events @ E_{extra}~0

$$D^{0} \rightarrow K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+},$$

$$K_{s}^{0}\pi^{0}, K_{s}^{0}\pi^{+}\pi^{-}, K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}$$

$$K^{+}K^{-}, \pi^{+}\pi^{-}$$

$$D^{*0} \rightarrow D^{0}\pi^{0}, D^{0}\gamma$$

$$X = n\pi^{\pm} + mK + p\pi^{0} + qK^{0}$$

 $n + m \le 5, \quad m, p, q \le 2$

[PRD-RC 88, 031102 (2013)]

ullet Events selected on the recoil of fully reconstructed $B extstyle D^{(*)} X$, $J/\psi X$ with Tag Efficiency = 0.28 %

- \bullet Events reconstructed in the e⁺vv, μ ⁺vv, $\pi^+ v$, $\rho^+ (\pi^+ \pi^0) v$ channels requiring a single charged track
- BKG from continuum & combinatorial reduced by means of a likelihood ratio exploiting topological variables.

• From E_{Extra} fit:

BR(B $\rightarrow \tau \nu$)=(1.83^{+0.53}(stat)±0.24(syst))10⁻⁴ (significance 3.8 σ)
• Exceeds the SM prediction by 2.4 σ (1.6 σ) using V_{ub} from the exclusive

(inclusive) charmless semileptonic B decays

$B \rightarrow \tau \nu$

[PRD-RC 88, 031102 (2013)]

Constraints on 2HDM type II model

• Stringent limits set in the $(tan\beta, m_{H+})$ plane:

$$B \rightarrow D^{(*)} \tau \nu$$

 Tree level decay less model dependent, several observables sensitive to NP

$$B\{rac{b}{ar{q}} - egin{array}{c} ar{v}^{-} & ar{v}^{-} \ ar{q} & D^{(*)} \end{array}$$

BRs for the different lepton species are predicted to be different in the SM:

$$\mathcal{R}(D^{(*)}) \equiv rac{\mathcal{B}(B o D^{(*)} au
u)}{\mathcal{B}(B o D^{(*)} \ell
u)}$$
 $\mathcal{R}(D)_{\mathrm{SM}} = 0.297 \pm 0.017,$ $\mathcal{R}(D^*)_{\mathrm{SM}} = 0.252 \pm 0.003.$

- Theoretical & experimental uncertainties (V_{cb}, Form Factors, Particle identification, reconstruction effects) reduced in the BRs ratio
- →D, D* affected differently by charged Higgs exchange (different helicity)

β→**∑**(**)τυ

[PRD 88, 072012 (2013)]

- D^(*) l events selected on the recoil of reconstructed hadronic B decays
- Use only leptonic τ decays
- Yields extracted by means of a simultaneous fit to:
 - ♣ Lepton momentum in the B rest frame

$$M^2_{\text{miss}} = (P_{e+e-} - P_{\text{Btag}} - P_{D(*)} - P_{1})^2$$

 $R(D) \approx 0.440 \pm 0.058 \pm 0.042$ $R(D^*) \approx 0.332 \pm 0.024 \pm 0.018$

Systematics from BKG PDF shape

β→**∑**(*)τυ

[PRD 88, 072012 (2013)]

 \bullet Results above the SM prediction by 3.4 σ

Adding Belle results:

[PRL 99 191807, PRD 82 072005]

Deviation from SM prediction at 4.80

B S	
Belle & BaBar	Deviation
$\mathcal{R}(D)$	2.4σ
$\mathcal{R}(D^*)$	3.8σ
Combined	4.8σ

Amplitude Analysis of B+ \rightarrow K $\pi\pi\gamma$

- Extraction of the dilution from amplitudes of intermediate states decaying to $K\pi$ and $\pi\pi$
- Full amplitude analysis in the $m(K\pi)$ - $m(\pi\pi)$ difficult due to small statistics
 - Perform a 1D fit to $m(K\pi)$ using as inputs the BRs obtained from the $m(K\pi\pi)$ fit

$$\mathcal{D}_{K_S^0 \rho \gamma} = F(A_{\rho}, A_{K^*}, A_{(K\pi)S-wave}) = 0.549^{+0.096}_{-0.094}$$

Amplitude Analysis in $B^+ \rightarrow K_s \pi^+ \pi^0$

BaBar Preliminary

Decay channel	$\mathcal{B}\left(10^{-6}\right)$
$K^0\pi^+\pi^0$	$45.9 \pm 2.6 \pm 3.0 \pm 8.6$
$K^{*0}(892)\pi^+$	$14.6 \pm 2.4 \pm 1.3 \pm 0.5$
$K^{*+}(892)\pi^0$	$9.2 \pm 1.3 \pm 0.6 \pm 0.5$
$K_0^{*0}(1430)\pi^+$	$50.0 \pm 4.8 \pm 6.0 \pm 4.0$
$K_0^{*+}(1430)\pi^0$	$17.2 \pm 2.4 \pm 1.5 \pm 1.8$
$\rho^{+}(770)K^{0}$	$9.4 \pm 1.6 \pm 1.0 \pm 2.6$

First uncertainty is statistical, second systematic, and third due to the signal model

Implications from B→X_sI⁺I⁻ Partial BFs on LHCb "anomaly"

- A recent LHCb paper essentially claims a ~4 sigma observation of a non-SM signal from one of an ensemble of 24 <u>quasi</u>-independent observables
 - PRL 111, 191801 (2013)
- There are, however, a number of caveats
 - ~4 sigma is a local significance; globally, assuming all 24 observables are independent, there is ~1 in 200 chance that this is a statistical fluctuation
 - However, all 24 observables are not, in fact, independent and are tied together by the transversity amplitudes which underlie the choice of angular projections here, P'4 and P'5
 - This implicit correlation also requires that other related observables, which are also dependent on the same underlying Wilson coefficients and/or transversity amplitudes, show an effect (albeit possibly smaller), but this is not seen in LHCb's AFB analysis or other experiments' angular analyses or, more importantly, in the form-factor free inclusive B->Xsll analysis
- Many theorists are "explaining" this singular LHCb result as a BSM contribution to C9, δ C9
 - A few are also exploring the implications of this on other RadPen observables
 - The next page shows change in B->XsII BF if δ C9 is interpreted in the context of an MFV scenario

Figure 1: Measured values of P'_4 and P'_5 (black points) compared with SM predictions from Ref. [11] (blue bands).

8

16

Implications from B→X_sI⁺I⁻ Partial BFs on LHCb "anomaly"

