Searches for Low-Mass New Physics: CP-odd Higgs and Dark Photons

Yury Kolomensky

LBNL/UC Berkeley

For the BABAR Collaboration

XXXth International Workshop on High Energy Physics Protvino, June 23-27, 2014

Why CP-Odd Low-Mass Higgs

- Higgs seems to be at hand -- but the fun is just beginning...
 - □ Is this a Higgs? Or THE Higgs?
 - Need guidance from both low and high energies
- E.g. NMSSM models with light CP-odd Higgs
 - □ Solve fine-tuning problems in MSSM
 - Also help explain some astro-particle observations
 - INTEGRAL x-rays, Fermi and PAMELA excesses, direct DM claims, ...

T. Rizzo (SLAC Summer Institute 2012)

Fig. 1. Raw spectrum and background model components.

CP-Odd Low-Mass Higgs

- NMSSM parameter space
 - □ 7 scalar fields
 - © 6 MSSM fields plus singlet As
 - Visible CP-odd component:

- CP-odd Higgs, A0, below 2m_b is not constrained by LEP
- Observable Branching Fraction (BF) for $\Upsilon \rightarrow \gamma A^0$ possible in 10^{-7} – 10^{-4} range
- Accessible at B-Factories in e⁺e⁻ annihilations or bottomonium decays
 - □ Subject of a comprehensive campaign of searches in BABAR since 2008

Non-singlet fraction $(\cos \theta_A)$

$$m_{A0} < 2m_{\tau}$$
 $2m_{\tau} < m_{A0} < 7.5 \text{ GeV}$
 $7.5 \text{ GeV} < m_{A0} < 8.8 \text{ GeV}$
 $8.8 \text{ GeV} < m_{A0} < 9.2 \text{ GeV}$

Low-Mass Higgs Decays

- Pattern of decays depends on A⁰
 mass and couplings (tanβ)
 - © Dermisek & Gunion, PRD 81, 075003 (2010)
- Comprehensive search in a variety of final states
 - Leptonic and hadronic

0.500

0.100

0.050

0.010

0.005

0.001

0.500

0.100

0.050

0.010

 $tan\theta=20$

m_{A0} (GeV)

 $tan \beta = 3$

Upsilon Resonances

• Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

Upsilon Resonances

• Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

For any bottomonium process $BF_{nS} = \Gamma_{nS}/\Gamma_{tot} >> BF_{4S}$, n=1,2,3Significantly better sensitivity to direct production of light degrees of freedom @ narrow resonances. Focus of BaBar's Run7 (2008)

BABAR Experiment: 1999-2008

BaBar dataset: 531 fb⁻¹ total recorded luminosity

- \sim 470M Y(4S) decays
- ~120M Y(3S) decays
- ~100M Y(2S) decays

Searches for a Light Higgs in BABAR

Radiative Decays of Y(nS) Signature: monochromatic photon

- \wedge A⁰ \rightarrow μ + μ -, PRL**103**, 081803 (2009)
- \checkmark A⁰→τ+τ-, PRL**103**, 181801 (2009)
- ✓ A⁰→hadrons, PRL**107**, 221803 (2011)
- ✓ A^0 →invisible, arXiv:0808.0017

Additional constraints: $\Upsilon(1S)$ from $\Upsilon(2S,3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ transitions Signature: two low-momentum pions, recoiling against $\Upsilon(1S)$

- \wedge A⁰ \rightarrow $\mu^+\mu^-$, PRD **87**, 031102 (2013)
- \wedge A⁰ $\to \tau^+\tau^-$, PRD **88**, 071102 (2013)
- \checkmark A⁰ \rightarrow hadrons, PRD **82**, 0317019R (2013)
- ✓ A⁰→invisible (light dark matter), PRL**107**, 021804 (2011)

$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-$

- Select clean data sample with $\Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$ transitions = 100 M Y(2S) decays
- Look for one-prong τ decays; identify $\tau^+\tau^-$ with at least one lepton in the final state
 - □ 5 decay channels in total: (ee, μμ, eμ, eπ, μπ)
- Two neural net discriminants: dipion transitions and A⁰→ττ decays
 Signal efficiency 1-4.5%
- Look for peaks in photon energy spectrum (mass recoiling against photon)

Simulated event $\Upsilon(2S) \rightarrow \pi \pi \Upsilon(1S)$, $\Upsilon(1S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau \tau$, $\tau \tau \rightarrow \pi e(+3\nu)$

$\Upsilon(nS) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-$: Results

Limit A⁰ couplings over broad range of mass

PRL103 (2009) 181801 PRD 88 (2013) 071102

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+ l^-)} = \frac{g_b^2 G_F m_b^2}{\sqrt{2}\pi\alpha} \mathcal{F}_{QCD} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2} \right) \qquad g_b = \tan\beta \cos\theta_A$$

$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \text{hadrons}$

Selection

- Exclusive reconstruction of A⁰ in 26 /14 different channels for gg/ss final state.
 Two body decays excluded as CP-odd Higgs can not decay into two pseudoscalars
- Beam-energy constraints to improve A⁰ mass resolution

Main background

- $Y(1S) \rightarrow \gamma gg$ (low masses)
- Y(1S) → ggg (high masses)

Extract yield from mass spectrum in the range $0.5 < m_A < 9$ GeV, use cut and count method with bkg estimated from sidebands.

Large systematic uncertainty from hadronization (~50%)

#	Channel	# Channel
1	$\pi^{+}\pi^{-}\pi^{0}$	$14 K^{+}K^{-}\pi^{+}\pi^{-}$
2	$\pi^{+}\pi^{-}2\pi^{0}$	$15 K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$
3	$2\pi^{+}2\pi^{-}$	$16 K^{\pm} K_{S}^{0} \pi^{\mp} \pi^{+} \pi^{-}$
4	$2\pi^{+}2\pi^{-}\pi^{0}$	$17 \ K^{+}K^{-}\eta$
5	$\pi^+\pi^-\eta$	$18 K^{+}K^{-}2\pi^{+}2\pi^{-}$
6	$2\pi^+2\pi^-2\pi^0$	19 $K^{\pm}K_{S}^{0}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
7	$3\pi^{+}3\pi^{-}$	$20 K^{+}K^{-}2\pi^{+}2\pi^{-}\pi^{0}$
	$2\pi^{+}2\pi^{-}\eta$	$21 K^+K^-2\pi^+2\pi^-2\pi^0$
9	$3\pi^{+}3\pi^{-}2\pi^{0}$	$22 K^{\pm} K_{S}^{0} \pi^{\mp} 2\pi^{+} 2\pi^{-} \pi^{0}$
10	$4\pi^{+}4\pi^{-}$	$23 K^{+}K^{-}3\pi^{+}3\pi^{-}$
11	$K^+K^-\pi^0$	$24 \ 2K^{+}2K^{-}$
12	$K^{\pm}K^0_S\pi^{\mp}$	$25 p\bar{p}\pi^0$
13	$K^+K^-2\pi^0$	$26 p\bar{p}\pi^+\pi^-$

$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \text{hadrons}$

PRD 88 (2013) 031701R

Most significant signals

• gg: 2.7σ @ 8.1 GeV

• ss̄: 2.9σ @ 8.6 GeV

Toy Monte Carlo studies shows that the probability to see a significance as large as the observed one is

• gg: 86%

• ss: 59%

No significant signal is observed

Bayesian upper limits (90% CL) in the range $0.5 \le m_{A0} \le 9.0 \text{ GeV}$

$$B(Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow gg) < 10^{-6} - 10^{-2}$$

 $B(Y(1S) \rightarrow \gamma A^0, A^0 \rightarrow s\overline{s}) < 10^{-5} - 10^{-3}$

NMSSM preferred range excluded at low mass

BABAR Higgs Coupling Limits

Comprehensive limits on low-mass (NMSSM etc.) Higgs Also place significant constraints on other models, e.g. axion-like states, dark photons

Gauge Bosons in the "Dark Sector"

Dark matter particles in ~TeV range, but new gauge bosons in ~GeV range Coupling to leptons due to small mixing between SM and DS

New gauge bosons decay to lepton pairs, anti-proton production forbidden by kinematics or suppressed → explains PAMELA etc features

Search for low-mass states in e⁺e⁻ annihilation @ B-Factories

N. Arkani-Hamed et al PRD 79, 015014 (2009)

Dark Sector Searches

Coupling to SM particles proportional to $\varepsilon^2\alpha$ Search for direct resonance production in e⁺e⁻ annihilation. Multi-lepton final states, or radiative processes e⁺e⁻ $\rightarrow \gamma$ e⁺e⁻, $\gamma \mu^+ \mu^-$. Very large datasets (>500 fb⁻¹ in BaBar and ~1000 fb⁻¹ in Belle) allows for high-statistics searches

Pospelov; Bjorken, Essig, Schuster, Toro Andreas, Niebuhr, Ringwald Batell, Pospelov, Ritz; Essig, Harnik, Kaplan, Toro Blumlein, Brunner;

Dent, Ferrer, Krauss Essig Schuster, Toro, Wojtsekhowski KLOE, APEX, MAMI/A1 Collab. Davoudiasl, Lee, Marciano; Endo, Hamaguchi, Mishima

Invisible Dark Photon: $e^+e^- \rightarrow \gamma + invisible$

Dominant background from $e^+e^- \rightarrow \gamma \gamma$, with one of the photons missing the EM calorimeter. Veto such events by detecting activity in the muon detector (IFR).

- $\Upsilon(3S) \rightarrow \gamma + \text{invisible}$ (arXiv:0808.0017)
- Require a single photon with $E^*_{\gamma}>2.2 \text{ GeV}$
- No charged tracks
- No additional energy in EMC above 100 MeV
- Missing momentum points to EMC
- No activity in IFR aligning with missing momentum
- No signal found: limits on ε of order O(10⁻³-10⁻²)

$e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu + \mu -$

- Dark photon can be produced in $e^+e^ \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$, $\mu^+\mu^-$
- So far similar search has been done in $\Upsilon(3S)$ and $\Upsilon(2S)$ decays: extend to full dataset NEW! arXiv:1406.2980
- Measure the cross section for $e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$ from 20 MeV to 10.2 GeV
- Look for a narrow peak in invariant mass
- Full BaBar data sample: 514 fb⁻¹

Typical event

- Tracks
- —— Photon
- Signal in muon/hadron detector

Event Selection

- Clean selection: high energy photon and a pair of oppositely-charged, well-identified e⁺e⁻ or μ ⁺ μ ⁻
 - □ The dielectron channel is tuned to provide the best results for $m_A < 215 \text{ MeV}$
 - □ Reject photon conversion events in
 A' → e+e- using a multivariate discriminant
 - A' → μ+μ- most sensitive above m_{A'}>2m_μ
 High-efficiency selection; background dominated by QED processes
- No significant excess found: set limit on cross section and dark photon coupling ε

arXiv:1406.2980

m_R (GeV)

$e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$: Results

Largest local significances:

- 3.4σ for electrons @ 7.02 GeV
 - \rightarrow 0.6 σ with trial factors
- 2.9σ for muons @ 6.09 GeV
 - \rightarrow 0.1 σ with trial factors

arXiv:1406.2980

Results: Dark Sector Mixing

90% CL upper limits on $\varepsilon^2 = \alpha'/\alpha$

Moving average to guide the eye

Limits at the level of $O(10^{-7} - 10^{-6})$

arXiv:1406.2980

Results: Dark Sector Mixing

Further exclude the region favored by the muon g-2 anomaly and improve the existing constraints over a wide range of masses.

Search for Dark Higgs

- Extension of the dark sector models: dark Higgs
 - Mass generation in dark sector
 - Mass can be low
 - Detect by Higgs-strahlung process e+e⁻→ A'h'
 - Decays to A' pairs
 - Multi-particle (multi-lepton) final state
 - © Clean detection, virtually no QED background

Dark Higgs Search

Focus on direct decay topology: $e^+e^- \rightarrow A'h'$; $h' \rightarrow A'A'$ Look for A' decays to a pair of oppositely-charged tracks, or to invisible final state $(A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, X)$

Require same mass for each pair

6 events selected (18 combinations)

Consistent with background estimates

..... m_a, = 1 GeV

 $---- m_{\Delta} = 0.5 \text{ GeV}$ m_{A'} = 0.3 GeV

10⁻⁶

10⁻⁷

10⁻⁸

10⁻⁹

10⁻¹⁰

Dark Higgs Limits

 $m_{h'}$ (GeV)

Substantial improvement over previous

limits. Constrain model space

Summary and Outlook

- B Factories provide significant constraints on new physics models with low-mass degrees of freedom
 - Direct searches: unique sensitivity to low-mass new physics in high-statistics datasets
- Belle-II will increase statistics by ~100
 - Combined with LHC and direct detection dark matter searches, these measurements will provide unique information on the dynamics and flavor structure of new

physics

Backup

$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-: ML \text{ Fits}$

ML fits to data distributions: signal peak + smooth background Look for significant excess of signal events over background as a function of assumed A⁰ mass

Direct Search for Dark Sector

Look for e⁺e⁻ \rightarrow l⁺l⁻l⁺l final states (4e, 2e2 μ ,4 μ) as a function of two-lepton mass

Full BaBar dataset (~540 fb⁻¹)

$$\sigma(e^+e^- \to W'W' \to l^+l^-l'^+l'^-) < (25-60) \text{ ab}$$

Some of the smallest cross section ULs measured @ B-Factories

Invisible Dark Photon: e+e-→y+invisible

