Phenomena in Heavy-Ion Collisions

Stepan Obraztsov Skobeltsin Institute for Nuclear Physics Moscow, Russia

Protvino XXX: XXXth International Workshop on High Energy Physics, "Particle and Astroparticle Physics, Gravitation and Cosmology: Predictions, Observations and New Projects", 23-27 Jun 2014, Kurchatov Institute, Protvino, Russia

Outline

- LHC Run 1 for Heavy-lons
- Centrality determination
- Experiments overview
- Soft Probes
 - Ridge effect
 - Elliptical and Triangular Flow
- Hard Probes
 - Medium sensitive probes
 - Electroweak probes
- Summary and Outlook

Public results:

CMS : <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN</u> ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

LHC Run 1 for heavy-ion physics

System	$\sqrt{S_{NN}} [TeV]$	When	L per experiment
Pb+Pb	2.76	2010+2011	0.17 nb^{-1}
p+Pb	5.02	2012+2013	36.14 nb ⁻¹ (CMS) 29 nb ⁻¹ (ATLAS)
p+p	2.76	2011	$200 n b^{-1}$
p+p	2.76	2013	5.6 pb^{-1}

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

Centrality in Pb+Pb and p+Pb

In p-Pb, only Pb-going side measurement is used

Events are classified according to the percentile of the Pb-Pb inelastic cross section based on total deposited energy in the forward calorimeters

The ATLAS Detector

- Inner Detector tracking |η|<2.5</p>
- Calorimeter- |η|<4.9
- Muon Spectrometer |η|<2.7</p>

The CMS Detector

Charged particle multiplicity

Soft Probes

Collective particle flow:

- A useful tool to study the property of matter created in nuclear collisions
- Results from a pressure-driven anisotropic collective expansion of the matter
- Sensitive to the initial geometry and its fluctuations
- Well modelled in A+A collisions by hydrodynamic evolution

The Ridge

"Ridge" (long-range near-side angular correlations) is observed in high multiplicity p-p and p-Pb as well as in central PbPb collisions

Elliptic flow in p-Pb vs Pb-Pb

v_n flow in p-Pb vs Pb-Pb

> 0.2 Remarkable similarity in the v_3 signal in p-Pb Pb+Pb Centrality 55-60% 0.15 and Pb-Pb! 0.1 0.05 ATLAS Preliminary v₃{2, l∆ηl>2} р_т [GeV] 5 $v_3\{2, |\Delta \eta| > 2\}, N_{trk}^{offline} < 20 \text{ sub.}$ p+Pb 220≤N^{rec}<260 0.03 ° ~ 0 $0.3 < p_{_{T}} < 3 \text{ GeV/c}$ CMS 0.05 ິ^{ເຕ 0.02}, Preliminary ATLAS 10 р_т [GeV] 0.01 $PbPb \sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.08 $^{>}_{4}$ p+Pb 220≤N^{rec}<260 pPb \ s_{NN} = 5.02 TeV Pb Pb+Pb Centrality 55-60% 0.06 0.00 100 300 200 0.04 $N_{trk}^{offline}$ PLB 724 (2013) 213 0.02 ATLAS Preliminary 10 ATLAS-CONF-2014-021 p₋ [GeV]

p+Pb 220≤N^{rec}<260

Hard probes

Charged hadron suppression in Pb-Pb

For central collisions:

- A pronounced minimum at $P_T = 6 7 \text{ GeV}$ where $R_{PbPb} \approx 0.13$
- At higher P_T R_{PbPb} rises and levels off above 40 GeV
- Suppression at high P_T at the same level as jet suppression

Charged hadron suppression in p-Pb

 $R_{pPb} = 1$ from 2 – 30 GeV - no suppression

 $R_{pPb} > 1$ above 30 GeV

Anti-shadowing? but stronger than predicted by models

Di-jet energy imbalance : Pb-Pb

change with jet P_{T}

constant relative energy loss?

0.6

0.8

р_{т.2}/р_{т.1}

PRL 109 (2012) 152303

Details on di-jet imbalance in Pb-Pb

Detailed ($\Delta R, P_T$) distributions

- Summing charged particles for unbalanced ($A_J > 0.22$) di-jets in central (0–30%) collisions
- 35 GeV missing at $\Delta R < 0.2$, high P_T particles
- Balanced by low P_T particle up to very large ΔR
- Subtracting the same from pp shows a different P_T mix
- But a similar P_T -integrated ΔR distribution

Di-jet energy imbalance : p-Pb

Pronounced shift of mean di-jet rapidity in Pbgoing η direction vs centrality due to nPDF effects. Better agreement with CT10+EPS09

CT10+EPS09

Exp. Unc.

-2

CT10+EPS09 Unc.

CT10

η_{dije},

---- CT10 Unc.

Exp. Unc.

-0.02

-2

Inclusive jet suppression in Pb-Pb

- A factor of ~2 suppression in 0-10% most central collisions
- R_{PbPb} monotonically decreases vs N_{part}
- R_{PbPb} shows a slight increase with jet P_T
- No significant dependence on rapidity observed

$$R_{PbPb} = \frac{d^2 N_{ch}^{PbPb} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{ch}^{pp} / dp_T d\eta}$$

Inclusive jet suppression in p-Pb

- A weak P_T dependence?
- Results consistent with EPS09 prediction

Inclusive jets fragmentation functions in Pb-Pb

- A modest but significant modification of fragmentation seen:
 - an enhancement in fragment yield in central collisions for $P_T < 5 \ GeV$
 - a reduction in fragment yield for $5 GeV < P_T < 30 GeV$
 - an enhancement in the fragment yield for $P_T > 30 \ GeV$
- The modification decreases monotonically with decreasing centrality.
- Modifications observed for all three jet radii (R = 0.2, 0.3, 0.4)

Quarkonia suppression in Pb-Pb

Sequential suppression $\Upsilon(3s) > \Upsilon(2s) > J/_{\psi} > \Upsilon(1s)$

Well-ordered with binding energy and increases with centrality

CMS: Phys. Rev. Lett. 107(2011)052302, Phys. Rev. Lett. 109 (2012) 222301, JHEP 05(2012)063

Y suppression in p-Pb

Moderate Υ(ns)/Υ(1s) suppression (much lesser than in Pb-Pb) - initial or final state effect?
Υ(ns)/Υ(1s) decreases with event multiplicity for all systems: p-p, p-Pb, Pb-Pb

Z^0 : From Pb-Pb to p-Pb

In **Pb-Pb**: No medium effects for electromagnetic hard probes. Confirmation of NN binary scaling.

From Pb-Pb to p-Pb

In Pb-Pb:

- No medium effect observed
- W yields increase proportional to Ncoll

In **p-Pb**:

- Showing small deviations from unmodified PDFs
- A hint of a different u/d modification?

Summary

- Consistent picture of dense and hot matter produced in Pb+Pb
 - collective behaviour (ridges, v_n)
 - no medium effects for EWK probes (γ,Z,W), confirmation of binary NN scaling
 - strong jet and charged hadron quenching, modification of jet shape and fragmentation function
 - quarkonia suppression, including excited Y states, sequential suppression
- Highlights from p+Pb
 - hints of possible collective behaviour (ridges, v_2 , v_3)
 - no jet quenching (R_{PbPb} ?, di-jets)? initial state effect (nuclear shadowing)?
 - excited Y states are suppressed as compared to p+p
 - the initial state nPDFs are modified (ch.hadrons R_{PbPb}?, η di-jet)

Thank you!

Backup slides

Elliptic flow of identified particles

η -dependence of v_2 in p-Pb

v_4 vs v_2 non-linearity in Pb-Pb

 $\sqrt{c_0^2 + (c_1 v_2^2)^2}$ fit is used to separate linear and non-linear structure driven contributions

- Describes well the behavior for all centrality bins
- Linear part has a non-standard increasing dependency⁰¹

γ + jet correlations in Pb-Pb

Jet energy modification relative to a probe, not affected by the medium

ATLAS-CONF-2012-121

- Shape and integral compatible with PYTHIA for peripheral collisions
- For central events shift towards smaller $X_{J\gamma}$

γ + jet correlations in p-Pb

 $R_{J\gamma}$ = fraction of photons with a jet of $P_{TJet} > 30 \ GeV$

Jet energy is essentially unmodified in p-Pb

PAS-HIN-13-006

J/ψ azimuthal anisotropy

Prompt photon production

ATLAS-CONF-2012-051

Yields scaled by Taa and compared to JETPHOX predictions

R_{pA} vs R_{AA} for jets and b jets

Nuclear modifications factors in Pb-Pb (hadrons, jets, b-jets, secondary J/ ψ , electroweak probes)

- No medium effects for electroweak hard probes (Z^0 , W^{\Box} , prompt \Box)
- Charged particles and jets are suppressed, suppression factors saturate at high transverse momentum
- Observation of b-quark (via secondary J/ ψ 's) suppression
- B-jets (*extracted using vertex info*) seem suppressed on the similar level as inclusive jets

B mesons in p-Pb and Pb-Pb

Jet shapes in Pb-Pb

