TOTEM Results on Elastic Scattering and Total Cross-Section

Jan Kašpar on behalf of the TOTEM collaboration

TOTEM : LHC experiment dedicated to forward hadronic phenomena

final state: rapidity gaps, very forward protons

Jan Kašpar

TOTEM : Experimental apparatus

• Telescopes T1 and T2: charged particles from inelastic collisions

- all detectors symmetrically on both sides of IP5
- all detectors trigger-capable

Jan Kašp<u>ar</u>

Outline

- 1) Experimental method: Roman Pot detectors, optics ...
- 2) Elastic scattering: analysis method and results
- 3) Total cross-section: analysis method and results
- 4) Study of Coulomb-nuclear interference

TOTEM and elastic scattering

- elastic scattering = 2 anti-collinear protons from the same vertex: Left: RP station at -220 m top RPs \rightarrow bottom RPs \rightarrow far near four-momentum transfer squared: tscattering angle: $\vartheta^* \simeq \sqrt{t/p}$ azimuthal angle: $\vartheta^*_x = \vartheta^* \cos \varphi^*$
 - vertical angle: $\vartheta_x^* = \vartheta^* \cos \varphi$ vertical angle: $\vartheta_y^* = \vartheta^* \sin \varphi^*$

- 2 diagonals \Rightarrow control of systematics
 - left bottom right top
 - left top right bottom

- 2 units \Rightarrow improved:
 - \circ event selection
 - kinematics reconstruction

- each station: near and far units
- each unit: top, bottom and horizontal Roman Pots
- Roman Pot
 - movable beam-pipe insertion
 - retracted when beam unstable
 - close to beam for data taking
 - $\circ\,$ contains: 5 \times 2 back-to-back mounted silicon sensors
- edge-less silicon sensors
 - $\circ\,$ insensitive edge (facing beam): pprox 50 μ m
 - $\circ\,$ strips with pitch 66 μm oriented at 45 $^{\circ}\,$ wrt. active edge
- VFAT: trigger-capable read-out chip

Proton measurement with RPs

• proton transport IP5 \rightarrow RP detectors:

• example: elastic sample seen with 3 different optics:

lan Kašpar

 \Rightarrow optics knowledge essential \downarrow TOTEM can improve optics accuracy

- entirely data-driven
- two diagonals, several LHC fills \simeq different experiments \Rightarrow control of systematics

1. Alignment

- prior to data-taking: collimator-like beam-based alignment
- offline alignment: *relative* (analysis of track fit residuals) and *absolute wrt. beam* (symmetries of elastic scattering)

2. Kinematics reconstruction

- tracks in RPs \longrightarrow kinematics at IP ($\xi = 0 \Rightarrow$ relatively easy)
- choice of formulae (using Near and Far RPs) \rightarrow minimisation of systematics, typically:

$$\theta_X^* = \frac{x^{\mathsf{F}} - x^{\mathsf{N}}}{L_X^{\mathsf{F}} - L_X^{\mathsf{N}}}, \qquad \theta_Y^* = \frac{1}{2} \left(\frac{y^{\mathsf{N}}}{L_y^{\mathsf{N}}} + \frac{y^{\mathsf{F}}}{L_y^{\mathsf{F}}} \right)$$

3. Elastic tagging

- angles left = angles right (tolerance set by beam divergence: higher $\beta^* \Rightarrow$ more stringent cut)
- vertex left = vertex right
- protons $\xi \approx 0 \Rightarrow$ correlation hit position vs. track angle at RP

4. Background subtraction

- typically needed only for low β^* optics
- interpolation of event distribution surrounding the signal (tagged) region

5. Acceptance corrections

- RP sensors have finite size \Rightarrow low $| heta_V^*|$ cut
- LHC apertures \Rightarrow high $|\theta_V^*|$ cut
- azimuthal symmetry (verified) ⇒ geometrical correction (+ smearing around edges)

acceptance correction

Jan Kašpar

6. Unfolding of resolution effects

- angular resolution (better for high β^*): left-right proton comparison
- Monte Carlo calculation \Rightarrow impact on *t*-distribution
- 7. Inefficiency corrections
- uncorrelated 1-RP inefficiencies: repeat tagging with 3 RPs only and check the signal in 4th RP
- near-far correlated RP inefficiencies (showers from near to far RP)
- "pile-up" = elastic event + another track in a RP (prob. from zero-bias stream)

8. Luminosity

- from CMS (if available), uncertainty $\approx 4\%$
- from TOTEM (details later on)
- 9. Study of systematic uncertainties
- final $d\sigma/dt \Rightarrow$ input to Monte-Carlo simulation or numerical integration
- any analysis parameter: discrepancy simulation vs. reconstruction \Rightarrow study impact on *t*-distribution

Jan Kašpar

Elastic scattering results : $\sqrt{s} = 7 \text{ TeV}$

β*	RP approach	t range	el. events	publication
90 m	4.8 to 6.5 σ	0.005 to 0.4 GeV ²	1 M	EPL 101 (2013) 2100
3.5 m	7σ	0.4 to 2.5 GeV ²	66 k	EPL 95 (2011) 41001
3.5 m	18 <i>σ</i>	pprox 2 to 3.5 GeV ²	10 k	

XXX-th International Workshop on High Energy Physics, Protvino

11

Elastic scattering results : $\sqrt{s} = 8 \text{ TeV}$

• dip+bump well visible in the high-statistics $\beta^* = 90$ m data

high-statistics $\beta^* = 90$ m data:

pure exponential excluded with more than 7 σ significance

Jan Kašpar

Elastic scattering results : $\sqrt{s} = 2.76 \text{ TeV}$

- $\beta^* = 11$ m optics tuning in progress ($\rightarrow t$ values preliminary)
- LHC aperture(s) at pprox 14 σ
- dip (expected at $|t| \approx 0.6 \ {
 m GeV}^2$) unlikely to be visible

Jan Kašpar

XXX-th International Workshop on High Energy Physics, Protvino

14

Total cross-section

$N_{\rm el}$ from RPs $N_{\rm inel}$ from T2 \mathcal{L} from CMS ρ from COMPETE or TOTEM Jan Kašpar 24 June, 2014 XXX-th International Workshop on High Energy Physics, Protvino

Inelastic cross-section

Forward inelastic telescope T2

- detects charged particles at $5.3 < |\eta| < 6.5$
- ≈ 95 % of inelastic events seen (enough to detect 1 track!)

Inelastic cross-section analysis

1) *Raw rate*: event counting with T2

↓ experimental corrections: trigger and reconstruction inefficiencies, beam-gas event suppression, pile-up consideration

- 2) Visible rate: visible with T2 in perfect conditions
 - recovery of events with no T1-only events, events with gap over T2, low-mass tracks in T2[.] diffraction, cen. diff. without tracks in T1 and T2
- 3) *Physics rate*: true rate of inelastic events
- only one major Monte-Carlo-based correction: low-mass diffraction \Rightarrow but can be constrained from data ($\sigma_{tot}^{RP} - \sigma_{el}^{RP} - \sigma_{visible}^{T2}$)

Jan Kašpar

XXX-th International Workshop on High Energy Physics, Protvino

16

Total cross-section : $\sqrt{s} = 7$ and 8 TeV results

Total cross-section : Results in context

Measurements at $\sqrt{s} = 7$ TeV

- analysis at $\sqrt{s} = 2.76$ TeV: all three methods planned
 - elastic analysis: ongoing
 - inelastic analysis: almost finished

Jan Kašpar

XXX-th International Workshop on High Energy Physics, Protvino

TOTEM

• $\beta^* = 1000 \text{ m} : |t| \text{ as low as } 6 \cdot 10^{-4} \text{ GeV}^2 \Rightarrow observed Coulomb-nuclear inter$ ference (between Coulomb/electromagnetic and nuclear/strong interactions):

• interesting aspects

 \circ interference \Rightarrow determination of phase of nuclear amplitude

 $\circ~$ separation of Coulomb/nuclear effects \Rightarrow methodically better determination of $\sigma_{\rm tot}$

$$\mathcal{D}_{ ext{tot}}^{ ext{(nuclear)}} \propto \Im \mathcal{A}_{ ext{el}}^{ ext{nuclear}}(t=0)$$

Coulomb-nuclear interference : Theory

- *Coulomb amplitude* A^{C} : well known (QED, form-factors measured)
- Nuclear amplitude \mathcal{A}^{N}
 - *modulus*: constrained by TOTEM data \Rightarrow parametrised:

 $exp(b_1t + b_2t^2 + ...)$ $N_b =$ number of b_i parameters = 1 to 3

- $\circ\ phase:$ weak guidance from data \Rightarrow test a range of theoretical alternatives
- interference formula
 - simplified West-Yennie (SWY) [Phys. Rev. 172 (1968) 1413-1422]
 - traditional but
 - only compatible with constant phase and purely exponential modulus
 - Kundrát-Lokajíček (KL) [Z. Phys. C63 (1994) 619-630]
 - no \mathcal{A}^N limitations

• constant phase – the simplest choice $\arg \mathcal{A}^{N} = p_{0}$

• central phase – similar shape as in many phenomenological models

$$\begin{split} \arg \mathcal{A}^{\mathsf{N}} &= \frac{\pi}{2} - \operatorname{atan} \frac{\rho_0}{1 - \frac{t}{t_d}}, \ \rho_0 = \frac{1}{\operatorname{tan} p_0} \\ & \mathsf{t}_d \approx -0.53 \ \mathrm{GeV}^2 \end{split}$$

• peripheral phase [Z. Phys. C63 (1994) 619-630] – expected order in impact parameter space: elastic collisions more peripheral than inelastic $\langle b^2 \rangle^{\rm el} > \langle b^2 \rangle^{\rm inel}$

$$\begin{split} & \text{arg}\,\mathcal{A}^{\mathsf{N}} = \mathsf{p}_0 + \mathsf{A}\,\text{exp}\left[\kappa\left(\mathsf{In}\,\frac{t}{t_m} - \frac{t}{t_m} + 1\right)\right] \\ & \mathsf{A} \approx 5.53, \; \kappa \approx 4.01, \; t_m \approx -0.310\;\text{GeV}^2 \end{split}$$

Coulomb-nuclear interference : Simulation of phases \Rightarrow effect exploration

low-|t| effect: sum of two complex amplitudes \Rightarrow sensitivity to relative phase \Rightarrow sensitivity to $\rho \equiv \Re A^{H} / \Im A^{H} (t = 0)$

higher-|t| **effect**: additional amplitude contributions (combining both forces) \Rightarrow (some) sensitivity to nuclear phase *t*-behaviour

Coulomb-nuclear interference : Data available

 $\beta^{*} = 90 \text{ m}$

• $|t|_{min} \simeq 2 \cdot 10^{-2} \text{ GeV}^2$

statistics: 7 M el. events

 $\beta^* = 1000 \text{ m}$

- $|t|_{min} \simeq 6 \cdot 10^{-4} \text{ GeV}^2$
- statistics: 0.3 M el. events

goal: use both datasets to constrain the nuclear phase as much as possible (in progress)

24 June, 2014

- data fits \rightarrow for every parameter: value and uncertainty
 - full |t|-range: $6 \cdot 10^{-4}$ to 0.2 GeV²
 - \circ generalised χ^2 (full covariance matrix)
 - \circ typical χ^2 /"ndf" \approx 1
 - nuclear phase: only p_0 (value at t = 0) free parameter
- fits with constant and central phase: undistinguishable
- fits with $N_b = 1$ and KL or SWY interference formula: undistinguishable

Summary

		elastic differential cross-section	total cross-section	Coulomb-nuclear interference	
	90 m	published		Х	
7 TeV	3.5 m, medium t	published	Х	Х	
	3.5 m, high t	in progress	Х	Х	
	90 m, low stat.	published		X	
8 TeV	90 m, high stat.	in progress			
	1000 m	iii piogress			
2.76 TeV	11 m	in progress		Х	

 $\underset{\downarrow}{\mathsf{Backup}}$

- RPs = movable insertions \Rightarrow each run at different positions
- required angular precision μ rad $\Rightarrow \mu$ m alignment precision needed
- two types of alignment needed
 - $\circ~$ alignment of mechanical RP edges \rightarrow for machine protection
 - $\circ~$ alignment of RP sensors \rightarrow for physics
- need alignment wrt. the beam

3-step alignment procedure:

1) Collimation alignment: RP alignment wrt. beam, rough sensor alignment

- procedure prior to data taking
- standard procedure for LHC collimators

24 June, 2014

Jan Kašpar

Backup : RP Alignment II

- 2) Track-based alignment: relative alignment among sensors
- RP station: no magnetic field \rightarrow straight tracks
- $\bullet\ misalignments \rightarrow residuals$
- residual analysis \rightarrow alignment corrections
- overlap between horizontal and vertical RPs \rightarrow relative alignment among all sensors
- singular/weak modes: e.g. overall shift/rotation \Rightarrow need further alignment step

3) Alignment with elastic scattering: sensor alignment wrt. beam

Jan Kašpar

XXX-th International Workshop on High Energy Physics, Protvino

24 June, 2014

- optics imperfection sources
 - $\circ\,$ power-converter error: $\Delta I/I \approx 10^{-4}$
 - \circ magnet transfer function: $\Delta B/B pprox 10^{-3}$
 - \circ magnet rotation (< 1 mrad) and displacements (< 0.5 mm)
 - \circ magnet harmonics ($\Delta B/B pprox 10^{-4}$)
 - $_{\odot}$ beam momentum offset: $\Delta p/p pprox 10^{-3}$
 - beam crossing-angle uncertainty
- optics determination
 - direct measurement difficult
 - indirect from TOTEM observables
- TOTEM optics determination variation of magnet/beam parameters (within tolerances) to match TOTEM observables:

$$\circ L_y^L/L_y^R$$

$$\circ \frac{dL_y}{ds}/L_y$$

$$\circ s(L_X = 0)$$

xy coupling (tilts in xy plane)

o ...

Backup : Optics refinement with TOTEM data

example for $\beta^* = 3.5$ m optics

• optics uncertainty reduced:

x projection: from 1.6% to 0.17% y projection: from 4.2% to 0.16%

ightarrow LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment [arXiv:1406.0546]

Jan Kašpar

XXX-th International Workshop on High Energy Physics, Protvino

24 June, 2014

30

Backup : Systematic studies (1000 m)

Backup : Alternative exclusion of pure exponential ($\beta^* = 90$ m)

fit parametrisation: $A_1 \exp(B_1 t)$ for t < 0.07, $A_2 \exp(B_2 t)$ for t > 0.07

• tried split points t = 0.05 up to 0.10 GeV²; 0.07 gives best significance

• fits with systematics

- $\circ~A_1 = 529.30 \pm 22.33, B_1 = -19.678 \pm 0.074, A_2 = 514.68 \pm 22.33, B_2 = -19.264 \pm 0.057$
- \circ important correlation between segments 1 and 2

$$\circ$$
 $A_1 - A_2 = 14.617 \pm 1.789 \Rightarrow 8.2 \sigma$

$$\circ B_1 - B_2 = -0.414 \pm 0.056 \Rightarrow 7.4 \sigma$$

combined significance: 7.7 σ

- simplified West-Yennie formula (SWY)
 - *limitation*: derived for *constant slope B* (1 b_i parameter only) and *constant nuclear phase*
 - $\circ\,$ acts as simple interference phase (i.e. ${m \phi}$ is real-valued)

$$F^{C+H} = F^{C} e^{i\alpha \Phi} + F^{H}$$
, $\Phi = -\left(\frac{B|t|}{2} + \gamma\right)$

- Kundrát-Lokajíček formula (KL)
 - any slope *B*, any nuclear phase
 - \circ more complicated effect (Ψ complex in general)

$$F^{C+H} = F^{C} + F^{H} e^{i\alpha\Psi}$$

$$\begin{split} \Psi(t) &= \mp \int_{t_{\min}}^{0} dt' \ln \frac{t'}{t} \frac{d}{dt'} \mathcal{F}^{2}(t') \pm \int_{t_{\min}}^{0} dt' \left(\frac{F^{\mathsf{H}}(t')}{F^{\mathsf{H}}(t)} - 1 \right) \frac{I(t,t')}{2\pi} \\ I(t,t') &= \int_{0}^{2\pi} d\varphi \, \frac{\mathcal{F}^{2}(t'')}{t''} \,, \qquad t'' = t + t' + 2\sqrt{tt'} \cos\varphi \end{split}$$

Jan Kašpar

Backup : Coulomb-nuclear interference - results

Jan Kašpar

24 June, 2014

Backup : More elastic observables

