Constraints on Supersymmetry using LHC data

D.Kazakov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

1. Grand Unification Theory

1. Grand Unification Theory

GUT

Unification of constants, particles and interactions

1. Grand Unification Theory

Unification of constants, particles and interactions

Predictions of GUTs

1. Grand Unification Theory

Predictions of GUTs

Proton decay

Unification of constants, particles and interactions

1. Grand Unification Theory

Unification of constants, particles and interactions

Predictions of GUTs

$$p^{+} \left\{ \begin{array}{c} d \\ u \\ \end{array} \right\} \begin{array}{c} d \\ \bar{d} \\ e^{+} \end{array} \right\}$$

 $\tau_{proton} \sim 10^{32} years$ $\tau_{Universe} \approx 14 \cdot 10^9 years$

Proton decay

1. Grand Unification Theory

GUT $p^{\dagger} \begin{cases} u \\ u \\ x \end{cases}$

Pred

Proton decay

Unification of constants, particles and interactions

 $\tau_{proton} \sim 10^{32} years$ $\tau_{Universe} \approx 14 \cdot 10^9 years$

1. Grand Unification Theory

GUT $p^{+}\left\{ \begin{array}{c} d \\ u \\ x \end{array} \right.$

Pred

Proton decay

Unification of constants, particles and interactions

$$\tau_{proton} \sim 10^{32} years$$

$$\tau_{Universe} \approx 14 \cdot 10^9 years$$

The problem: stabilization of the Higgs sector of the SM subjected to radiative corrections due to the heavy particles of a GUT

2. The theory of supersymmetry

2. The theory of supersymmetry

2. The theory of supersymmetry

Predictions of SUSY

2. The theory of supersymmetry

Predictions of SUSY

quark

lepton

W-boson

Z-boson

gluon

photon

Higgs

graviton

2. The theory of supersymmetry

Predictions of SUSY

quark
lepton
W-boson
Z-boson
gluon
photon
Higgs
graviton

$$q
ightarrow ilde{q}$$
 $l
ightarrow ilde{l}$
 $W
ightarrow ilde{W}$
 $Z
ightarrow ilde{Z}$
 $g
ightarrow ilde{g}$
 $\gamma
ightarrow ilde{\gamma}$
 $H
ightarrow ilde{H}$
 $G
ightarrow ilde{G}$

2. The theory of supersymmetry

Predictions of SUSY

quark
lepton
W-boson
Z-boson
gluon
photon
Higgs
graviton

squark
slepton
wino
zino
gluino
photino
Higgsino
gravitino

2. The theory of supersymmetry

Predictions of SUSY

quark
lepton
W-boson
Z-boson
gluon
photon
Higgs
graviton

 $q
ightarrow ilde{q}$ $l
ightarrow ilde{l}$ $W
ightarrow ilde{W}$ $Z
ightarrow ilde{Z}$ $g
ightarrow ilde{g}$ $\gamma
ightarrow ilde{\gamma}$ $H
ightarrow ilde{H}$ $G
ightarrow ilde{G}$

squark
slepton
wino
zino
gluino
photino
Higgsino
gravitino

Solves the GUT problems

- unification of the couplings
- stabilization of the Higgs sector

2. The theory of supersymmetry

Predictions of SUSY

quark
lepton
W-boson
Z-boson
gluon
photon
Higgs
graviton

 $egin{aligned} q &
ightarrow ilde{q} \ l &
ightarrow ilde{l} \ W &
ightarrow ilde{W} \ Z &
ightarrow ilde{Z} \ g &
ightarrow ilde{g} \ \gamma &
ightarrow ilde{\gamma} \ G &
ightarrow ilde{G} \end{aligned}$

squark
slepton
wino
zino
gluino
photino
Higgsino
gravitino

Solves the GUT problems

- unification of the couplings
- stabilization of the Higgs sector

The key verification - creation of superpartners at colliders

Particle Phys

Direct production at colliders at high energies

Direct production at colliders at high energies

Direct production at colliders at high energies

Rare decays ($B_s \to s\gamma$, $B_s \to \mu^+\mu^-, B_s \to \tau\nu$) g-2 of the muon

Direct production at colliders at high energies

Indirect manifestation at low energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma$, $B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe

DM annihilation signal in cosmic rays

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Relic abundancy of Dark Matter in the Universe

DM annihilation signal in cosmic rays

Direct DM interaction with nucleons

Direct production at colliders at high energies

Rare decays ($B_s \to s \gamma, \ B_s \to \mu^+ \mu^-, B_s \to \tau \nu$) g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe

DM annihilation signal in cosmic rays

Direct DM interaction with nucleons

Nothing so far ...

Cascade processes of SUSY production

Missing energy and transverse momentum!

Search for SUSY at colliders

 $\tilde{t} \, \, \tilde{\chi}^0$

$$\tilde{g} \, \tilde{\chi}^0$$

The third generation is lighter

The see-saw mechanism

$$\begin{array}{ll} \tilde{q}_L & \tilde{q}_R \\ m_{\tilde{q}}^2 & = & \tilde{q}_L \begin{pmatrix} \tilde{m}_L^2 & m_q X_q \\ \tilde{q}_R & m_q X_q & \tilde{m}_R^2 \end{pmatrix}, \quad X_q = A_q - \mu \cot \beta \end{array}$$

The third generation is lighter

The see-saw mechanism

The see-saw mechanism
$$\tilde{q}_L \qquad \tilde{q}_R \\ m_{\tilde{q}}^2 \qquad = \qquad \tilde{q}_L \left(\begin{array}{cc} \tilde{m}_L^2 & m_q X_q \\ m_q X_q & \tilde{m}_R^2 \end{array} \right), \qquad X_q = A_q - \mu \cot \beta$$

Di-stop production resulting in 2 top quarks +MET final states

The third generation is lighter

The see-saw mechanism

The see-saw mechanism
$$\begin{array}{ll} \tilde{q}_L & \tilde{q}_R \\ m_{\tilde{q}}^2 &=& \tilde{q}_L \\ \tilde{q}_R & \begin{pmatrix} \tilde{m}_L^2 & m_q X_q \\ m_q X_q & \tilde{m}_R^2 \end{pmatrix}, \quad X_q = A_q - \mu \cot \beta \end{array}$$

Di-stop production resulting in 2 top quarks +MET final states

Small phase space - small branching

The third generation is lighter

The see-saw mechanism

$$m_{ ilde{q}}^2 =$$

$$egin{array}{c} ilde{q}_L \ ilde{q}_R \end{array}$$

$$\left(egin{array}{c} ilde{m}_L^2 \ m_q X_q \end{array}
ight.$$

 $ilde{q}_L$

$$ilde{q}_R$$

$$\begin{pmatrix} \tilde{m}_L^2 & m_q X_q \\ m_q X_q & \tilde{m}_R^2 \end{pmatrix},$$

$$X_q = A_q - \mu \cot \beta$$

Di-stop production resulting in 2 top quarks +MET final states

Small phase space - small branching

The third generation is lighter

The see-saw mechanism

$$= egin{array}{c} ilde{q}_L & ilde{m}_L^2 \ ilde{q}_R & ilde{m}_q X_q \end{array}$$

 $ilde{q}_L$

$$egin{array}{ccc} ilde{q}_L & ilde{q}_R \ ilde{m}_L^2 & m_q X_q \ m_q X_q & ilde{m}_R^2 \end{array} igg), & X_q = A_q - \mu \cot eta \ \end{array}$$

Di-stop production resulting in 2 top quarks +MET final states

Small phase space - small branching

There is still large unexplored space of possibilities

Universal scenario

Universal scenario

Universal scenario

Universal scenario

Masses of superpartners

Universal scenario

Masses of superpartners

D.Heuer: «There should be something beyond the SM like supersymmetry. I dream that at the LHC we can find some trace of the Dark matter particles» April, 2 CERN

D.Heuer: «There should be something beyond the SM like supersymmetry. I dream that at the LHC we can find some trace of the Dark matter particles» April, 2 CERN

Only the combination of these three signals will allow one to confirm the observation of the DM

D.Heuer: «There should be something beyond the SM like supersymmetry. I dream that at the LHC we can find some trace of the Dark matter particles» April, 2 CERN

 $\chi = LSP (neutralino)$

Only the combination of these three signals will allow one to confirm the observation of the DM

D.Heuer: «There should be something beyond the SM like supersymmetry. I dream that at the LHC we can find some trace of the Dark matter particles» April, 2 CERN

 $\chi = LSP (neutralino)$

Only the combination of these three signals will allow one to confirm the observation of the DM

The signal in absent so far!

Annihilation in halo

Annihilation in halo

Antiprotons

Annihilation in halo

Antiprotons

Positrons

Annihilation in halo

Antiprotons

Scattering on a target

Annihilation in halo

Antiprotons

Scattering on a target

Positrons

Direct search limits in SUSY Models

Today

Direct search limits in SUSY Models

Today

In few years

Direct search limits in SUSY Models

Today

In few years

The blue regions will not be accessible to future LHC SUSY searches at 14 TeV and 3000fb⁻¹ (LHC14).

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Supersymmetry has changed the quantum field theory landscape:

- theories without the UV divergences

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

- theories without the UV divergences
- exact results in all orders of PT

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

- theories without the UV divergences
- exact results in all orders of PT
- AdS/CFT correspondence

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

- theories without the UV divergences
- exact results in all orders of PT
- AdS/CFT correspondence
- conceptually new view on gauge theories

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Supersymmetry has changed the quantum field theory landscape:

- theories without the UV divergences
- exact results in all orders of PT
- AdS/CFT correspondence
- conceptually new view on gauge theories

Supersymmetry promises eventually to go beyond PT and for the first time to build an exactly solvable model of quantum field theory.

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Supersymmetry has changed the quantum field theory landscape:

- theories without the UV divergences
- exact results in all orders of PT
- AdS/CFT correspondence
- conceptually new view on gauge theories

Supersymmetry promises eventually to go beyond PT and for the first time to build an exactly solvable model of quantum field theory.

The way to quantum gravity through supersymmetry!

Paris Sphicas Parting word on SUSY

- Further guidance from theory (heard at Moriond 13): "Supersymmetry will be alive even if we don't find it at the LHC"
 - → My take: sure, but ~ noone will be looking for it.

My comment:

- there will be nowhere to look
- SUSY pheno will stop
- SUSY theory will remain

Supersymmetry has changed the quantum field theory landscape:

- theories without the UV divergences
- exact results in all orders of PT
- AdS/CFT correspondence
- conceptually new view on gauge theories

Supersymmetry promises eventually to go beyond PT and for the first time to build an exactly solvable model of quantum field theory.

The way to quantum gravity through supersymmetry!