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The problem: stabilization of the Higgs sector of the SM subjected
to radiative corrections due to the heavy particles of a GUT
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Search for SUSY manifestation

¢ Direct production at colliders at high energies

¢ Indirect manifestation at low energies

Rare decays ( B, — sv, By — u"pu~,Bs — 710 )
g-2 of the muon

¢ Search for long-lived SUSY particles

¢ Relic abundancy of Dark Matter in the Universe
¢ DM annihilation signal in cosmic rays
¢ Direct DM interaction with nucleons

Nothing so far ...
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Cascade processes of SUSY
poroduction

Missing energy and transverse momentum!
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The blue regions will not be accessible to future LHC SUSY searches at 14 TeV and 3000fb—1 (LHC14).
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