

Overview of ALICE results

Yuri Kharlov for the ALICE collaboration

Outlook

- Global event properties
- Particle production
- Collective effects
- Hard probes
- Quarkonium
- ALICE in future

ALICE in Run1

Global event properties

Event multiplicity

Dependence of $dN/d\eta$ on centrality of Pb-Pb collisions and on colliding system is essential for understanding the role of soft scattering processes in particle production

Total number of produced charged particles in 0-5% central Pb-Pb collisions: N_{ch} =17165±772

Linear trend from AGS to RHIC energies does not persist at LHC

Mean p_⊤ vs multiplicity

- pp and pPb much stronger increase than in PhPh
- Color reconnection describes data better in pp
- None model can describe p-Pb and Pb-Pb consistently

arXiv:1307.1094

Particle production

Pion, kaon, proton spectra

Combined measurements of all tracking detectors (ITS, TPC, TOF, HMPID) leads to identified charged hadron spectra in a wide p_T range in all collision systems.

- Input for flavor and mass dependence of particle yields
- Evolution with colliding system and centrality

Particle yields in pp vs √s

ALI-PREL-74045

Yield ratios of all measured hadrons in pp collisions show a very weak energy dependence in the range 0.9–7 TeV.

Particle yields: pp, p-Pb, Pb-Pb

ALI-PREL-74423

- Yield ratios of all particles look similar in pp, p-Pb and Pb-Pb collisions
- A hint is enhancement of Ω and p and a decrease of K* in heavy-ion collisions

Particle yields in Pb-Pb: data vs thermal model

THERMUS: CPC 180 (2009) 84 GSI: PLB 673 (2009) 142

SHARE: arXiv:1310.5108

- Equilibrium models describe well the yields of all particles.
- Interesting to note that nuclei are also produced thermally.

ALI-PREL-74463

Baryon anomaly

- Λ production is strongly enhanced in central Pb-Pb collisions
- Clear centrality dependence
- Quantitatively the same effect as the one observed earlier at RHIC
- Ratio Λ/K_S^0 in p-Pb collisions is similar to that in peripheral Pb-Pb collisions

• No Λ enhancement in jets

Collective effects in QCD matter

Identified particle flow

ALI-PUB-82677

 Spatial anisotropy → anisotropy in momentum space

 Mass ordering → attributed to common radial expansion velocity

- Mass ordering for multistrange baryons
- v₂/n_q scaling at the LHC less obvious
- Mass drives v₂ rather than number of constituent quarks

arXiv:1405.4632

Freeze-out radii in pp, p-Pb and Pb-Pb

- Femtoscopic radius: size of source at freeze-out
- Extracted radii in pp and p-Pb collisions at similar multiplicity are consistent
- pp and p-Pb are described by CGC initial conditions (IP-Glasma) without a hydrodynamic phase
- Pb-Pb can only be described with a hydrodynamic phase
- Significant collective expansion already in peripheral Pb-Pb collisions

arXiv:1404.1194

Hard probes

Jet suppression in Pb-Pb

R_{AA}=1: no nuclear effects

R_{AA}<1: suppression

R_{AA}>1: enhancement

ALICE results overview

17

Light flavor suppression in Pb-Pb

- •p_T<3 GeV/c: ratios K/ π and p/ π are in agreement with hydrodynamics
- •p_⊤>10 GeV/c: particle ratios in pp and Pb-Pb are similar
 - •Particle composition of in-medium jets is the same as in jet in the vacuum

Charm suppression in Pb-Pb

Charm suppression is similar to light flavor suppression

Identified particle spectra in p-Pb

"Cronin enhancement" for baryons at $p_T=3-5$ GeV/c

Mass dependence of R_{p-Pb}?

 ϕ meson is similar to π and K

R_{pPb} →1 for all particles species: suppression observed in Pb-Pb is a hot matter effect

More nuclear effects in p-Pb

 $R_{pPb} = 1$ at high p_T :

- for charged particles above 10 GeV/c
- for charged jets up to 100 GeV/c
- for open charm (D mesons)
- for heavy flavour lepton decays
- for $W\rightarrow \mu$

Particle production in p-Pb is scaled with binary collisions:

- no evidence of initial state effects
- spectra suppression in Pb-Pb is a final state effect (parton energy loss)

Quarkonium

J/psi suppression in Pb-Pb

- J/psi "melts" in heavy-ion collisions from SPS to LHC
- However, suppression at LHC energy is less than at RHIC.
- In-medium cc recombination?

J/psi suppression in p-Pb

p-going direction

Pb-going direction

Multiplicity-dependent suppression for both J/ψ and $\psi(2S)$

No suppression for J/ ψ . Multiplicity-dependent suppression $\psi(2S)$.

Future ALICE

Plans for Run2 and Run3

- Run2 in 2015 2017
 - Complete geometry for all detectors
 - Upgraded detectors, readout, trigger
 - LHC energy up to 13 TeV for pp (~5.1 TeV for Pb-Pb)
 - Collect 10 pb⁻¹ with pp rare triggers, 70 nb⁻¹ with pp minimum bias trigger, 1 nb⁻¹ with Pb-Pb.
- Run3 2020-2022 and beyond:
 - Major detector upgrade: new ITS and new TPC readout
 - Improvement in vertexing capability and tracking a low p_T
 - Increase data-taking rate by factor 100! (→ 50kHz Pb-Pb)
 - Precision studies of charm and beauty mesons and baryons and quarkonia at low p_T
 - Low mass lepton pairs and thermal photons
 - $-\gamma$ -jet and dijets with particle identification in a large kinematic range

Heavy nuclear states

Summary

Hot QCD matter created in heavy ion collisions at LHC looks more and more interesting

- Particle yields in Pb-Pb are consistent with thermal model fit with T=156 MeV
- Quantum statistics measurements extract size of the system at freeze-out: radial expansion in Pb-Pb, similarity in pp and p-Pb
- Significant progress in precision (spectra, PID v_2 , D, J/ψ , ...)
- Better understanding of collective effects: v_2 mass ordering for light and strange hadrons up to $p_T < 2.5$ GeV/c. Flow is in agreement with hydrodynamics
- Mass seems to drive spectra and v₂ up to ~ 4 GeV/c in central collisions
- Wealth of new data of spectra suppression: LF, HF, jets

"Cold" nuclear matter in pA collisions is not so cold.

- Similarity with Pb-Pb: thermal fits, radial expansion
- No indications of quenching at high p_T (charged hadrons, jets, open charm, heavy flavor electrons and muons).

More ALICE talks at this workshop:

- Diffraction physics with ALICE (S.Evdokimov, Tuesday)
- Direct photon and neutral pion production in pp and Pb-Pb with ALICE (D.Peressounko, Thursday)

ALICE Fast Interaction Trigger detector (T.Karavicheva, Monday)