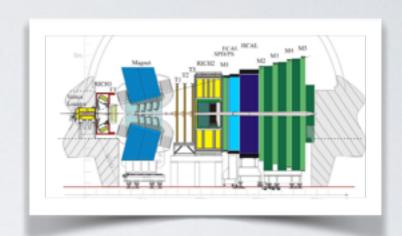
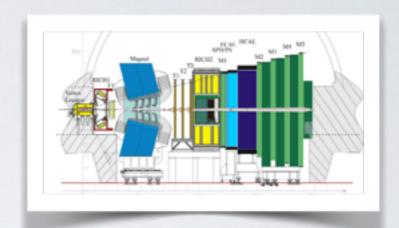
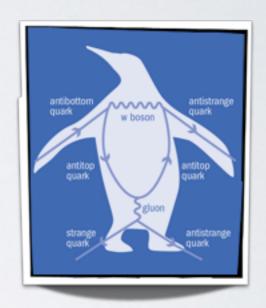
XXX-th International Workshop on High Energy Physics, Protvino, 23-28 June 2014

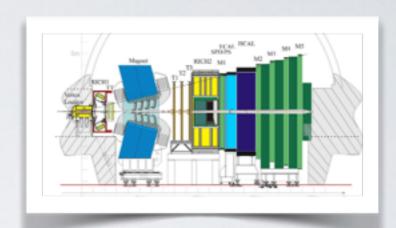
Rare decays at LHCb

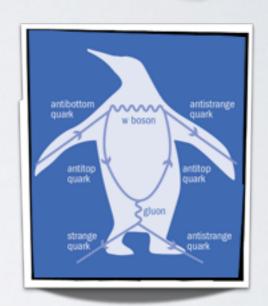

Luca Pescatore on behalf of the LHCb collaboration

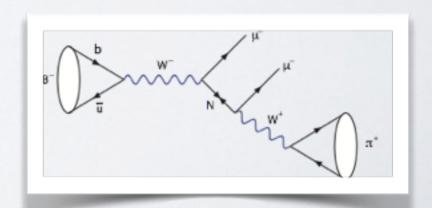



- The LHCb detector and how we use it
- Rare decays results at LHCb:
 - ▶ B_{s,d}→µµ: just a reminder
 - EW penguins
 - 1. Isospin asymmetry in B⁰→K^(*)µµ
 - 2. Angular analysis of B⁰→K^(*)µµ decays
 - 3. Testing lepton universality in R_K
 - 4. Radiative decays: photon polarisation in $b \rightarrow s\gamma$
 - Lepton-flavour violation searches
 - 1. Search for Majorana neutrino in B→πμμ
 - 2. Search for LFV in τ→μμμ

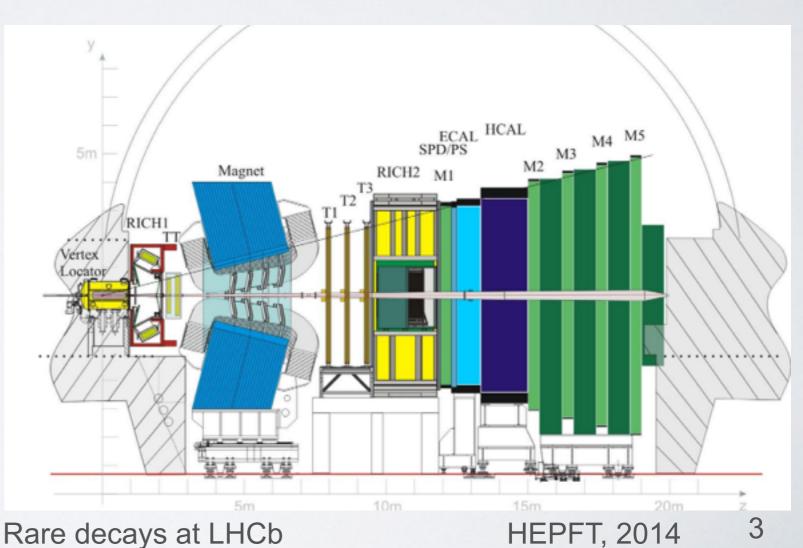
- The LHCb detector and how we use it
- Rare decays results at LHCb:
 - ▶ B_{s,d}→µµ: just a reminder
 - EW penguins
 - 1. Isospin asymmetry in B⁰→K^(*)µµ
 - 2. Angular analysis of B⁰→K^(*)µµ decays
 - 3. Testing lepton universality in R_K
 - 4. Radiative decays: photon polarisation in $b \rightarrow s\gamma$
 - Lepton-flavour violation searches
 - 1. Search for Majorana neutrino in B→πμμ
 - 2. Search for LFV in τ→μμμ




- The LHCb detector and how we use it
- Rare decays results at LHCb:
 - ▶ B_{s,d}→µµ: just a reminder
 - EW penguins
 - 1. Isospin asymmetry in B⁰→K^(*)µµ
 - 2. Angular analysis of $B^0 \rightarrow K^{(*)} \mu \mu$ decays
 - 3. Testing lepton universality in R_K
 - 4. Radiative decays: photon polarisation in $b \rightarrow s\gamma$
 - Lepton-flavour violation searches
 - 1. Search for Majorana neutrino in B→πμμ
 - Search for LFV in τ→μμμ

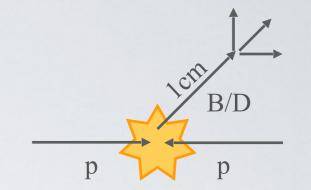


- The LHCb detector and how we use it
- Rare decays results at LHCb:
 - ▶ B_{s,d}→µµ: just a reminder
 - EW penguins
 - 1. Isospin asymmetry in B⁰→K^(*)µµ
 - 2. Angular analysis of $B^0 \rightarrow K^{(*)} \mu \mu$ decays
 - 3. Testing lepton universality in R_K
 - 4. Radiative decays: photon polarisation in $b \rightarrow s\gamma$
 - Lepton-flavour violation searches
 - 1. Search for Majorana neutrino in B→πμμ
 - 2. Search for LFV in τ→μμμ


- Precise vertex reconstruction: σ(IP) ~20μm
- Good PID (RICH): $\epsilon_{PID}(K) = 95\%$ for MisID($\pi \rightarrow K$) = 5%
 - Excellent mass resolution δp/p~0.5%
 - Very clean muon ID for trigger ~97%

Forward spectrometer fully instrumented in $2 < \eta < 5$

Flexible 2-level trigger:


- Hardware level →
 on muons, hadrons,
 electrons and photons
- Software level (HLT) → using partial reconstruction

JINST 3 (2008) S08005

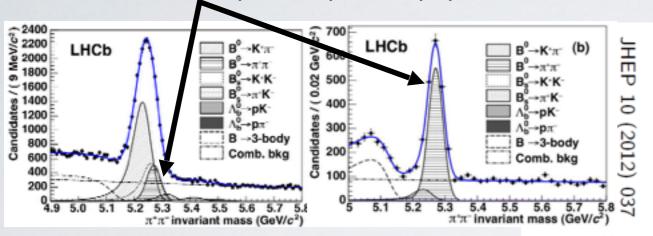
L. Pescatore

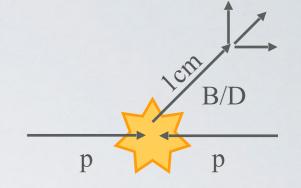
- Precise vertex reconstruction: σ(IP) ~20μm
- Good PID (RICH): $\epsilon_{PID}(K) = 95\%$ for MisID($\pi \rightarrow K$) = 5%

- Excellent mass resolution δp/p~0.5%
- Very clean muon ID for trigger ~97%

Forward spectrometer fully instrumented in $2 < \eta < 5$

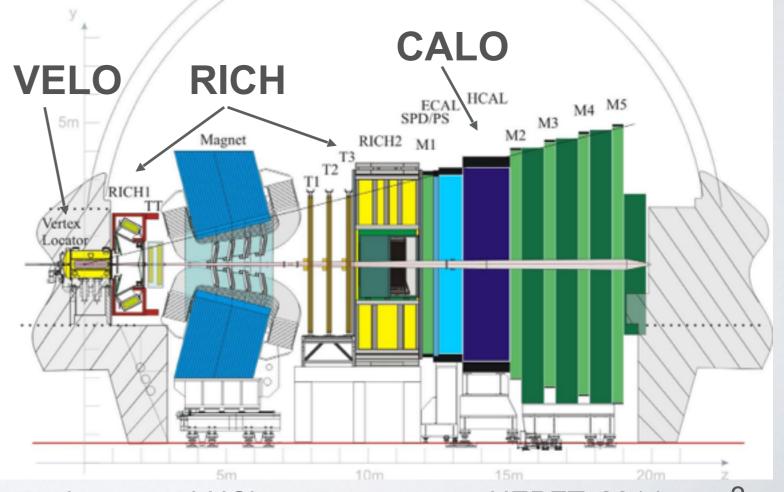
Flexible 2-level trigger:


- Hardware level →
 on muons, hadrons,
 electrons and photons
- Software level (HLT) → using partial reconstruction


JINST 3 (2008) S08005

Precise vertex reconstruction: σ(IP) ~20μm

• Good PID (RICH): $\varepsilon_{PID}(K) = 95\%$ for MisID($\pi \rightarrow K$) = 5%

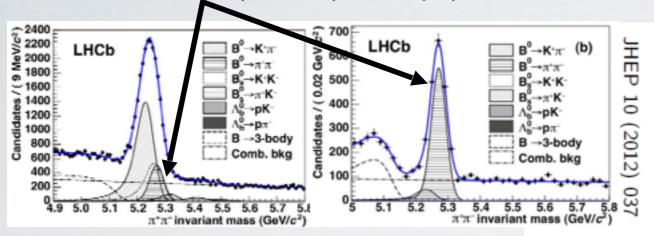

- Excellent mass resolution δp/p~0.5%
- Very clean muon ID for trigger ~97%

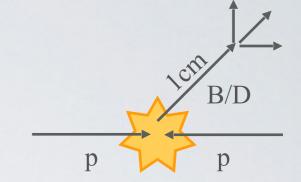
Forward spectrometer fully instrumented in $2 < \eta < 5$

Flexible 2-level trigger:

- Hardware level →
 on muons, hadrons,
 electrons and photons
- Software level (HLT) → using partial reconstruction

JINST 3 (2008) S08005




Rare decays at LHCb

HEPFT, 2014

Precise vertex reconstruction: σ(IP) ~20μm

• Good PID (RICH): $\varepsilon_{PID}(K) = 95\%$ for MisID($\pi \rightarrow K$) = 5%

- Excellent mass resolution δp/p~0.5%
- Very clean muon ID for trigger ~97%

CALO

Forward spectrometer fully instrumented in $2 < \eta < 5$

Flexible 2-level trigger:

- Hardware level →
 on muons, hadrons,
 electrons and photons
- Software level (HLT) → using partial reconstruction

JINST 3 (2008) S08005

VELO RICH

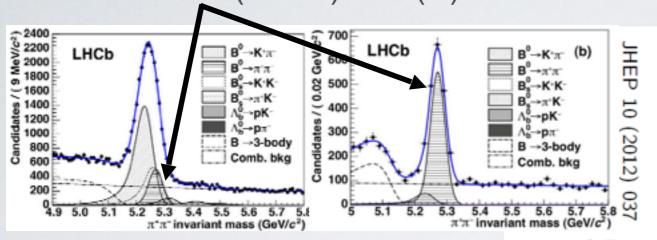
SPD/PS

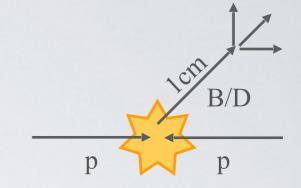
Magnet

RICH2 M1

Vertex
Locator

Sm 10m 15m 20m z

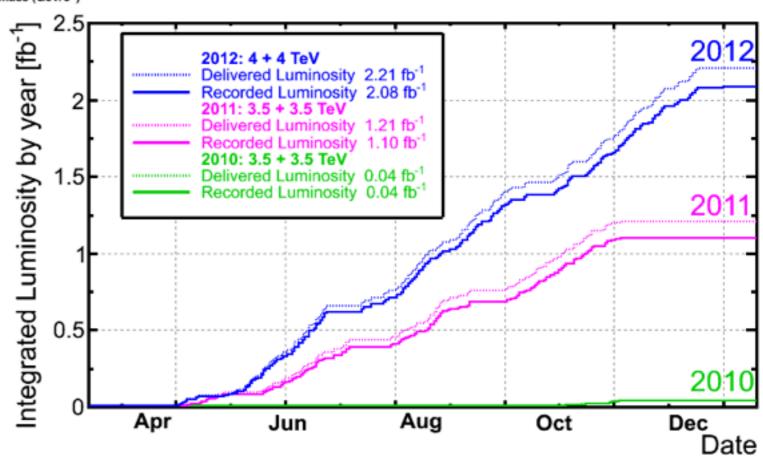

Rare decays at LHCb


HEPFT, 2014

MUON

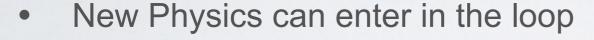
Precise vertex reconstruction: σ(IP) ~20μm

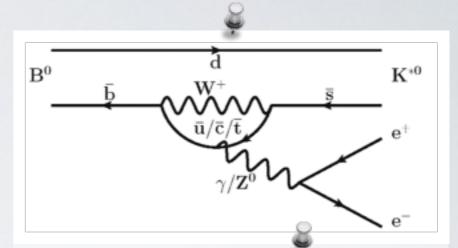
• Good PID (RICH): $\varepsilon_{PID}(K) = 95\%$ for MisID($\pi \rightarrow K$) = 5%

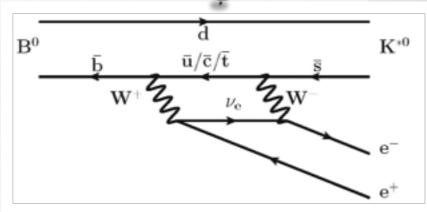


- Excellent mass resolution δp/p~0.5%
- Very clean muon ID for trigger ~97%

Forward spectrometer fully instrumented in $2 < \eta < 5$

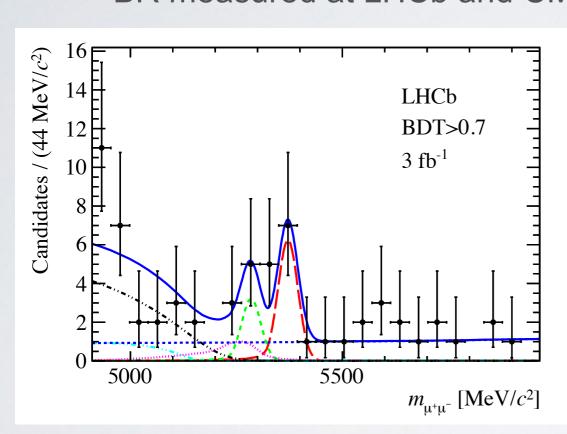

3 fb⁻¹ of data on tape: 1fb⁻¹ @ 7TeV 2011 2fb⁻¹ @ 8 TeV 2012

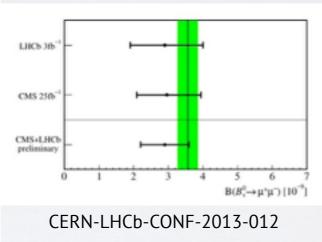

JINST 3 (2008) S08005


Is New Physics in my loops?

- Rare decays are decays suppressed in the SM happening at loop level only (penguin/box).
 - ► FCNC decays (like b→s transitions)
 forbidden at tree level in the SM

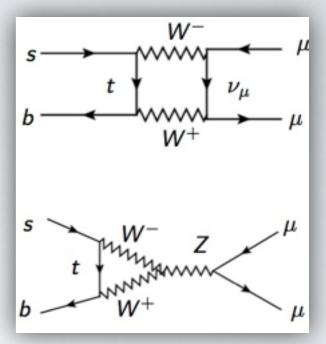
- Very sensitive to NP effects since SM component is small: BR typically ~10-6 or less
- No evidence in direct searches so far
- Complementary: can probe high energy scales
- Large number of observables:
 - Branching fractions, angular distributions, asymmetries.

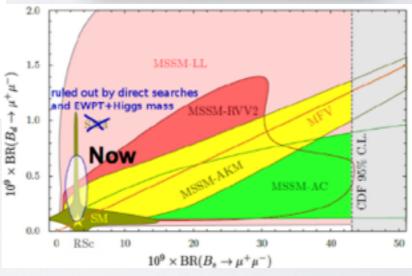




$B_{d,s} \rightarrow \mu \mu reminder$

- Highly suppressed in the SM by GIM + helicity
- Possible tree level BSM contributions ⇒ very sensitive
- Very well known in the SM $B(B_s \to \mu\mu) = (3.56 \pm 0.30) \cdot 10^{-9}$
- Excess was seen by Tevatron


BR measured at LHCb and CMS highly constrains SUSY



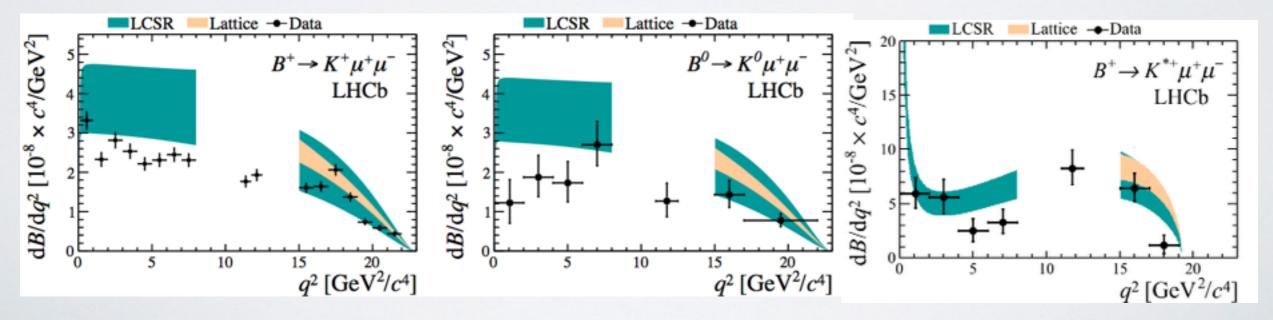
HFAG arXiv:1207.1158

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(\text{stat})^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9},$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(\text{stat})^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10}.$

Compatible with the SM.

PRL111(2013)101805


B→K(*)μμ Branching Ratios

- Decay rates of $B \rightarrow K^{(*)}\mu\mu$ decays are highly sensitive to NP entering the loops
- Decays considered are $K^{*+} \rightarrow K^0_S \pi$, $K^{*0} \rightarrow K^+ \pi^-$ and $K^0_S \rightarrow \pi \pi$. Modes with K^0_L and π^0 are not considered.
- Using 3fb⁻¹: full dataset
- Single measurements more precise than current world average!
- All compatible with SM but also all slightly lower.

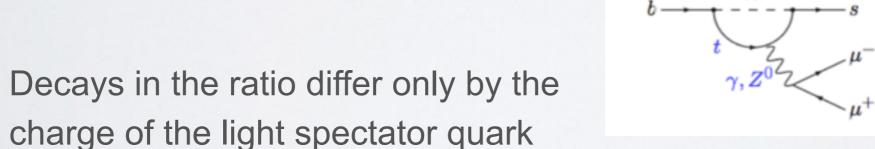
$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.29 \pm 0.07 \,(\text{stat}) \pm 0.21 \,(\text{syst})) \times 10^{-7},$$

 $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-) = (3.27 \pm 0.34 \,(\text{stat}) \pm 0.17 \,(\text{syst})) \times 10^{-7},$
 $\mathcal{B}(B^+ \to K^{*+} \mu^+ \mu^-) = (9.24 \pm 0.93 \,(\text{stat}) \pm 0.67 \,(\text{syst})) \times 10^{-7}.$

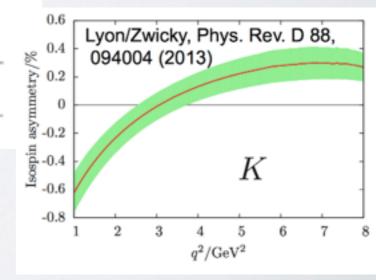
Extrapolating below J/ψ assuming distribution as in PRD 61 (2000) 074024

arXiv:1403.8044v2 Submitted to JHEP

Isospin asymmetry in $B \rightarrow K^{(*)} \mu \mu$


- Large uncertainties in $B \rightarrow K^{(*)}$ form factors calculations affect predictions
- To maximise sensitivity: measure asymmetries and ratios where the leading form factor cancel ⇒ <u>Isospin asymmetry</u>

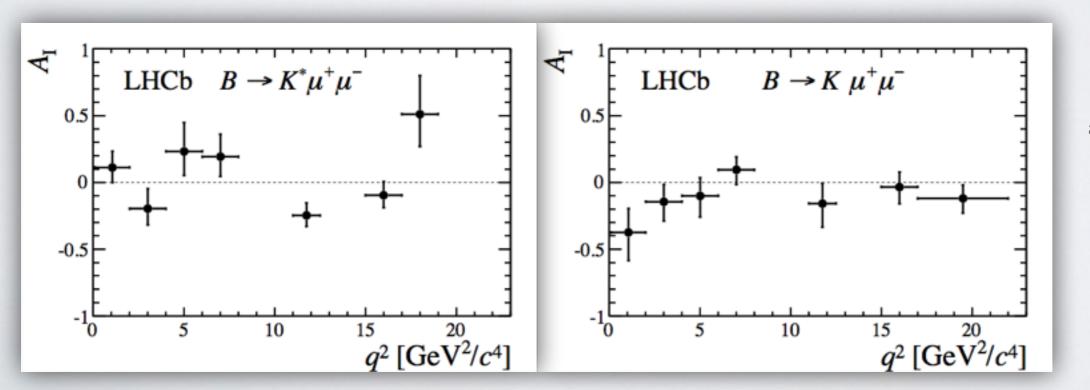
arXiv:1403.8044v2 Submitted to JHEP


$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - (\tau_{0}/\tau_{+})\mathcal{B}(B^{+} \to K^{(*)+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + (\tau_{0}/\tau_{+})\mathcal{B}(B^{+} \to K^{(*)+}\mu^{+}\mu^{-})}$$

Two ratios are measured for K and K*

B⁰ over B⁺ lifetimes ratio

 \Rightarrow A_I ~ O(1%) in SM (\neq 0 for m_q/m_b corrections)

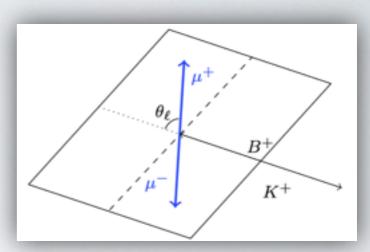


Isospin asymmetries

- B+/B0 production asymmetry can bias or dilute the result
 - ▶ B-factories assumed instead null B+/B⁰ production asymmetry
 - ► LHCb: J/ψ modes used for normalisation → assuming null isospin asymmetry
 - ▶ Also J/ψ channels have same final daughters → cancellations of systematics
- A₁=0 hypothesis tested against simplest alternative: constant ≠ 0
- Is now compatible with SM within 1.5σ

L. Pescatore

Compatible with BaBar and LHCb result on 1fb⁻¹ which showed evidence for A_I ≠ 0



arXiv:1403.8044v2 Submitted to JHEP

On 3fb⁻¹ full dataset

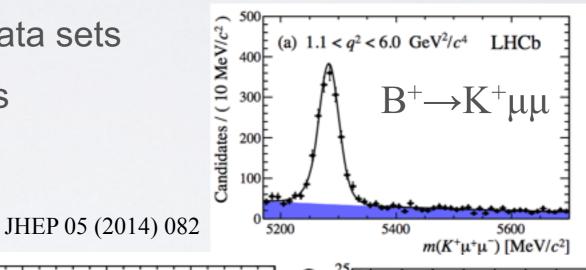
B→Kμμ angular analysis

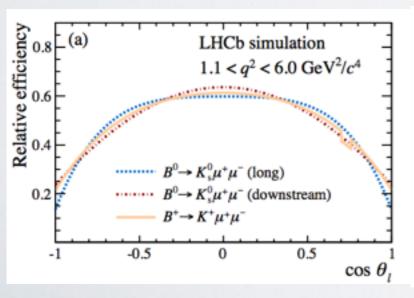
- Angular distribution of $B^+ \rightarrow K^+ \mu \mu$, $B^0 \rightarrow K^0 \mu \mu$
- As a function of $\cos \theta_{l}$, where θ_{l} is the angle between the K and the muon of opposite sign.

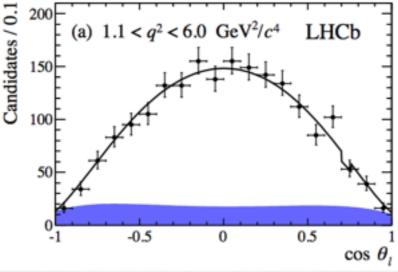
Fractional contribution of pseudo

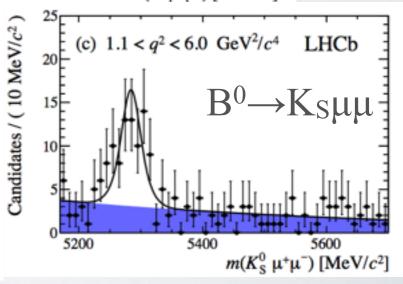
$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_l} = \frac{3}{4}(1-F_H)(1-\cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}\cos\theta_l$$
 Forward-backward asymmetry

- Both B⁰ and \overline{B}^0 can decay in $K^0_{S}\mu\mu \Rightarrow$ not possible to distinguish without tagging the B at production
 - Use |cosθ_I| to cancel any asymmetry (depends only on F_H)

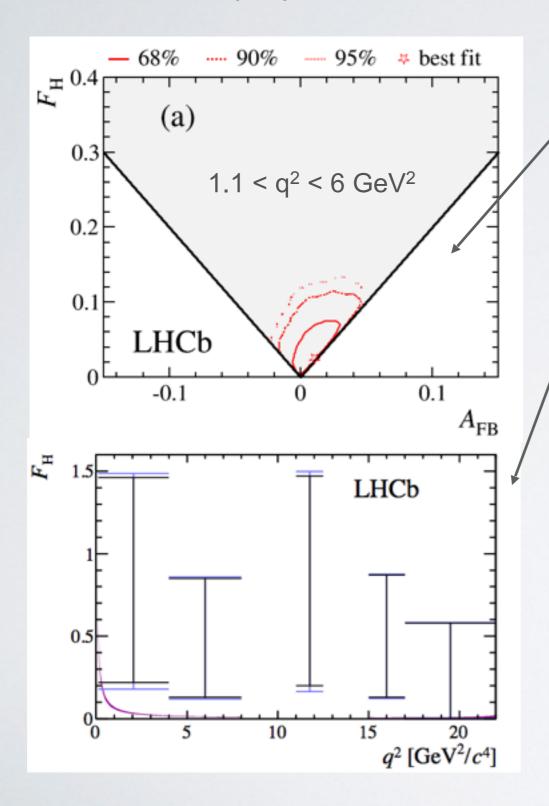

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_l} = \frac{3}{2} (1 - F_H)(1 - |\cos\theta_l|^2) + F_H$$


AFB and FH expected to be small in the SM.


JHEP 05 (2014) 082


B→Kμμ angular analysis

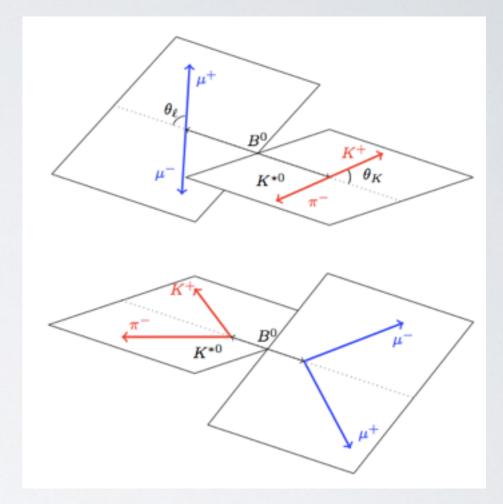
- Unbinned max likelihood fit is performed on m(Kµµ) and cosθι
- Acceptance is included modelled with a even polynomial (any asymmetries in reconstruction cancel combining B and B)
- For charged B→D⁰(→Kπ)π decays are vetoed
- Done on 3fb⁻¹ 2011+2012 data sets
- 4746 ± 81 charged B events
- 176 ± 17 neutral B events.



B→Kμμ angular analysis: results

- 2-dimensional A_{FB} vs F_H confidence regions for $B^+ \rightarrow K^+ \mu \mu$ using Feldman-arXiv:1109.0714v1 Cousins plug-in method
- 1-dimensional for B⁰→K⁰_Sµµ (only F_H)

A_{FB} and F_H consistent with SM predictions at 95%CL


JHEP 05 (2014) 082

- F_H consistent in charged and neutral B decays
- Measurement available in 17 q² bins also for charged
 B case thanks to the higher statistics.
- (Pseudo)Scalar amplitudes already constrained by B_s→µµ. This result also rules out large accidental cancellations between left and right handed couplings

Angular observables in B→K*µµ

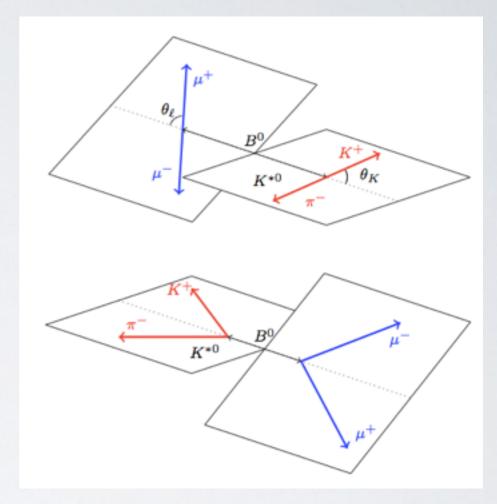
- Angular distributions described by 3 angles:
 θ_I, θ_K, φ
- Depends on Wilson coefficients (short distance) and form factors (long distance)
- Study variables which reduce form factor uncertainties (JHEP, 05, 2013, 137)

$$P'_{(4,5,6,8)} = \frac{S_{(4,5,7,8)}}{\sqrt{F_L(1-F_L)}}$$

PRL 111 (2013) 191801

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_l d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_l \right.$$

$$-F_L \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi$$


$$+S_5 \sin 2\theta_K \sin \theta_l \cos \phi + S_6 \sin^2\theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi$$

$$+S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right]$$

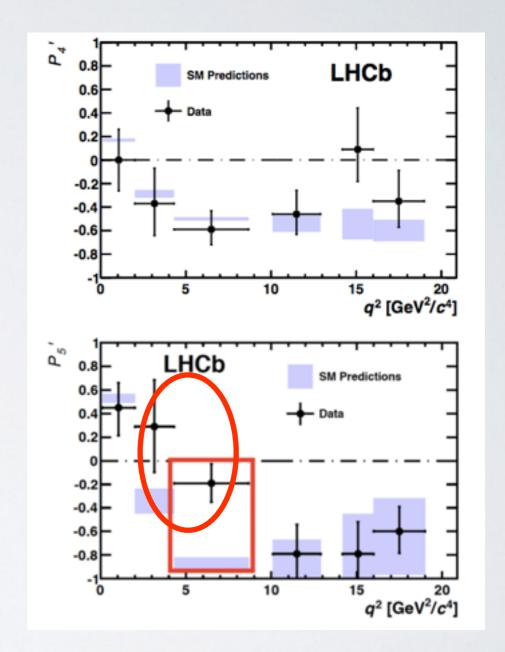
Angular observables in B→K*µµ

- Angular distributions described by 3 angles:
 θ_I, θ_K, φ
- Depends on Wilson coefficients (short distance) and form factors (long distance)
- Study variables which reduce form factor uncertainties (JHEP, 05, 2013, 137)

$$P'_{(4,5,6,8)} = \frac{S_{(4,5,7,8)}}{\sqrt{F_L(1-F_L)}}$$

PRL 111 (2013) 191801

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_l d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \int_{4}^{3} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_l$$

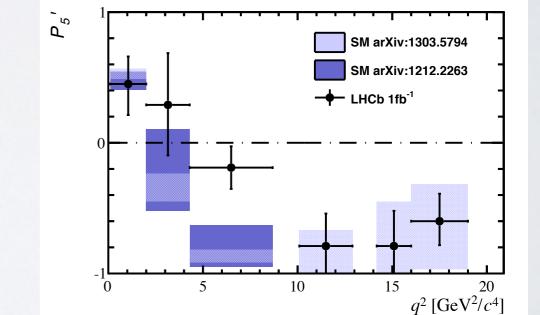

$$-F_L \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi$$

$$+S_5 \sin 2\theta_K \sin \theta_l \cos \phi + S_6 \sin^2\theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi$$

$$+S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi]$$

Angular observables in $B \rightarrow K^* \mu \mu$

- On 1 fb⁻¹: update to 3fb⁻¹ in progress
- Errors using Feldman-Cousins technique
- Many quantities are in good agreement with SM
- But 3.7σ local tension in P'₅
- Possible interpretation with NP contribution to Wilson coefficient C₉
- Difficult to explain in the MSSM anyway



HEPFT, 2014

PRL 111 (2013) 191801

Angular observables in B→K*µµ

- On 1 fb⁻¹: update to 3fb⁻¹ in progress
- Errors using Feldman-Cousins technique
- Many quantities are in good agreement with SM
- But 3.7σ local tension in P'₅
- Possible interpretation with NP contribution to Wilson coefficient C₉
- Difficult to explain in the MSSM anyway

LHCb

 $q^2 [GeV^2/c^4]$

PRL 111 (2013) 191801

Testing lepton universality

- The equality of the EW couplings of e and µ in the SM is called lepton universality
- Idea: use highly suppressed rare decays, where there is space for NP to test it
 - ▶ Universality $\rightarrow R_K \sim 1$ with $o((m_\mu/m_b)^2)$ corrections (JHEP 12 (2007) 040)

$$R_K = \frac{\int_{q_{min}}^{q_{max}^2} \frac{d\Gamma(B^+ \to K^+ ee)}{dq^2} dq^2}{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(B^+ \to K^+ \mu\mu)}{dq^2} dq^2}$$

$$q_{max}^2 \sim m_b^2$$

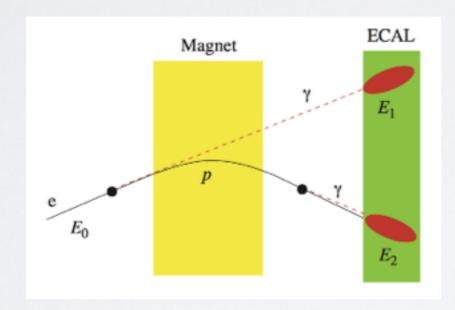
$$q_{min}^2 \sim 4m_\mu^2$$

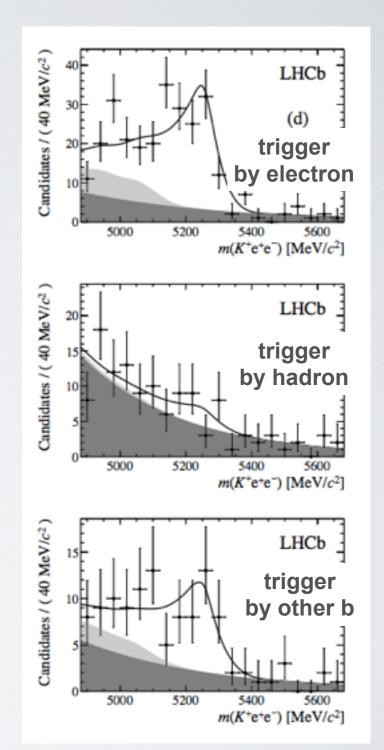
- Precisely predicted $R_K = 1.0 \pm 0.0001$
- q² bin [1,6] GeV² is theoretically favoured for NP

LHCb-PAPER-2014-024, in preparation

Double ratio with J/ψ channels is measured to cancel systematics

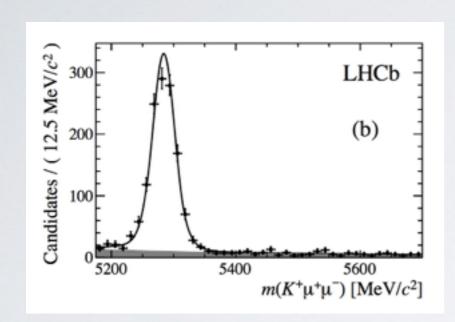
Belle
$$\Rightarrow$$
 RK = 0.74^{+0.46}_{-0.37} PRL 103 (2009) 171801


BaBar \Rightarrow RK = 1.03 ± 0.25 PRD 86 (2012) 032012


Now done in LHCb with **3fb**-1 of data

Electrons in LHCb

- The ee channels are the challenge in this analysis
 - Bremsstrahlung can affect the e momentum
 - → energy recovered looking at calorimeter hits
 - Fit in 0, 1, 2 bremsstrahlung photons categories
 - → to better handle resolutions and backgrounds


- Three trigger categories considered to maximise the yield
 - Trigger on the electron, hadrons and on on other b in the event

LHCb-PAPER-2014-024, in preparation

R_K results

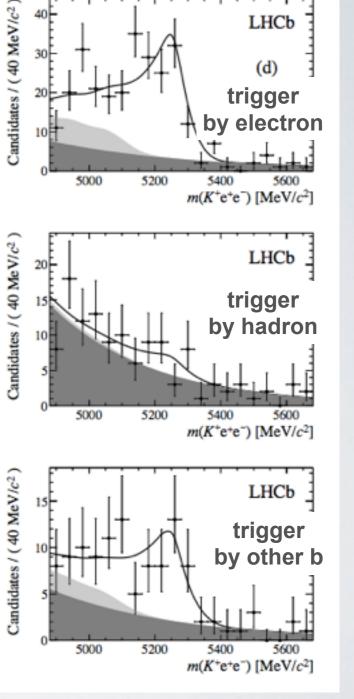
Very recent result: on arXive by the end of the week

← **Kµµ** triggered by muons

1266 ± 41 evts

Kee using 3 different trigger → categories to maximise the yield

$$R_{\rm K} = 0.745^{+0.090}_{-0.074} \, ({\rm stat})\, ^{+0.036}_{-0.036} \, ({\rm syst}),$$


- 2.6 deviations from the SM
- The ee BR is also reported

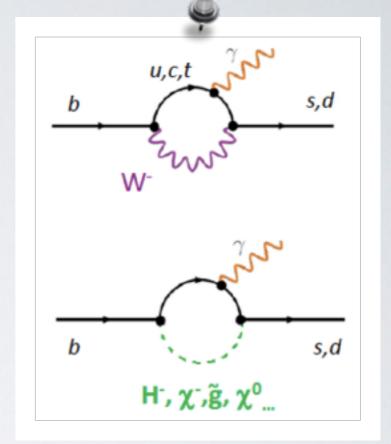
LHCb-PAPER-2014-024, in preparation

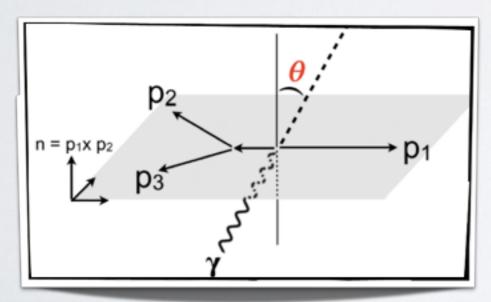
$$B(B^+ \to K^+ e^+ e^-) = (1.56^{+0.19}_{-0.15}^{+0.06}_{-0.04}) \times 10^{-7}$$

- Same ratio with K* in place of K is also being analysed
 - L. Pescatore

Rare decays at LHCb

LHCb


(d)


trigger

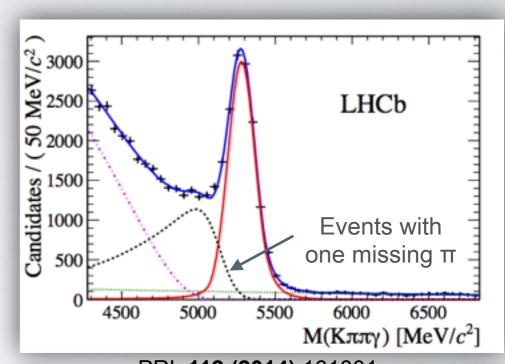
by electron

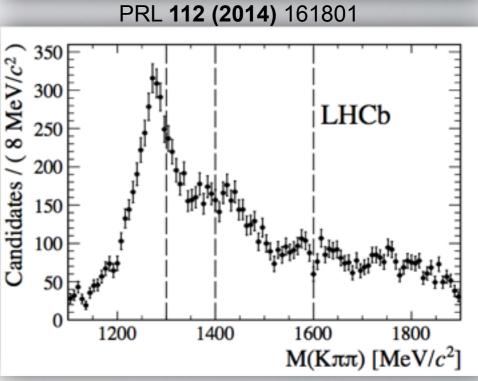
Photon polarisation in $B \rightarrow K \pi \pi \gamma$

- b→sγ transitions are EW loops in SM
- W boson couples only with left-handed fermions
 → photon dominantly left-handed (right-handed ~m_s/m_b)
- In BSM significant right-handed component expected due to exchange of heavy fermions

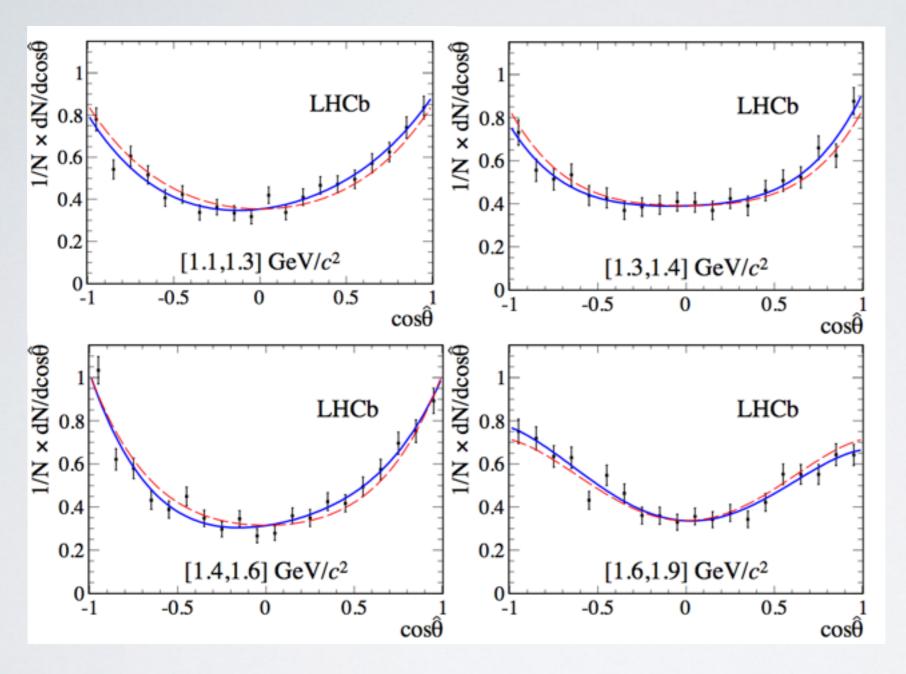
PRL **112 (2014)** 161801

- Using the photon angular distribution wrt the plane of the 3 hadrons in their CoM frame
- Measure up-down asymmetry, A_{UD} , proportional to photon polarisation $\lambda \gamma$
- Conceptually similar to the historic Mrs Wu's P-violation experiment


Photon polarisation in $B \rightarrow K\pi\pi\gamma$


- Using 3fb⁻¹ full data set:
 13876 ± 153 signal events
- Limited knowledge of $K\pi\pi$ invariant mass doesn't allow a straightforward interpretation
 - → main resonances K(1270) and K(1400)
 - → extraction of polarisation needs theory input
 - \rightarrow study done in 4 K $\pi\pi$ mass bins
- Method:

L. Pescatore

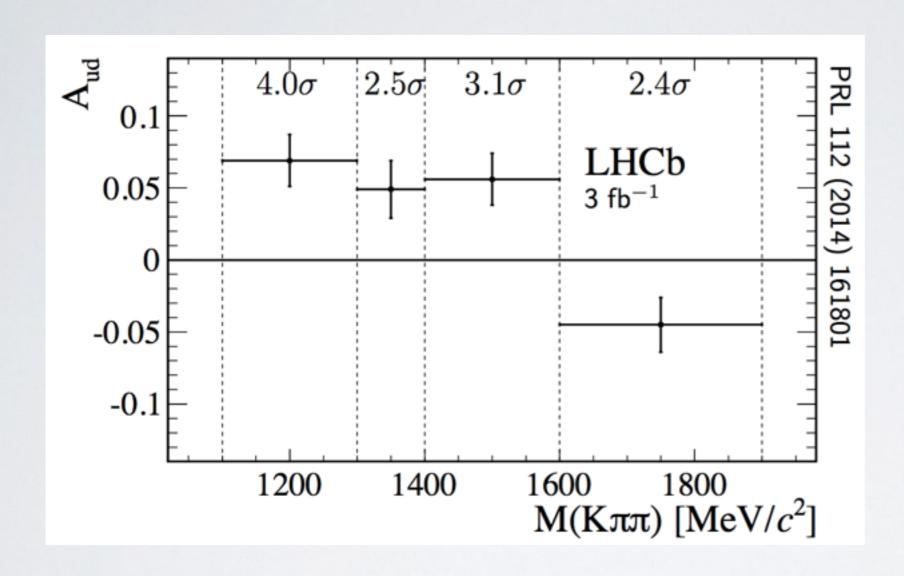

- Fit of B mass in bins of cosθ
- Correct for selection/reconstruction efficiency
- ▶ Fit angular distribution to extract AuD

$$A_{ud} = \frac{\int_0^1 d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^0 d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\Gamma}{d\cos\theta}}$$

Photon polarisation in $B \rightarrow K\pi\pi\gamma$: results

$$\sum_{i=0,2,4} a_i(s, s_{13}, s_{23}) \cos^i \theta + \lambda_\gamma \sum_{j=1,3} a_j(s, s_{13}, s_{23}) \cos^j \theta$$

Blue solid: including λ_{γ} term


Red dashed: forbidding λ_{γ} term $(\lambda_{\gamma}=0)$

PRL 112 (2014) 161801

First observation of a parity-violating photon polarisation at 5.2σ (for A_{UD})

N.B.: non-zero A_{UD} implies non-zero λ_γ

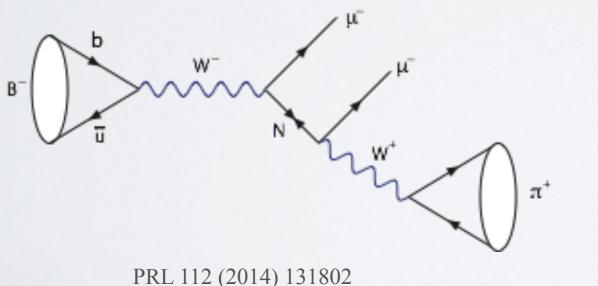
Photon polarisation in $B \rightarrow K\pi\pi\gamma$: results

$$\sum_{i=0,2,4} a_i(s, s_{13}, s_{23}) \cos^i \theta + \lambda_\gamma \sum_{j=1,3} a_j(s, s_{13}, s_{23}) \cos^j \theta$$

Blue solid: including λ_γ term

Red dashed: forbidding λ_{γ} term $(\lambda_{\gamma}=0)$

PRL 112 (2014) 161801


First observation of a parity-violating photon polarisation at 5.2σ (for A_{UD})

N.B.: non-zero A_{UD} implies non-zero λ_{γ}

L. Pescatore

Majorana neutrino search

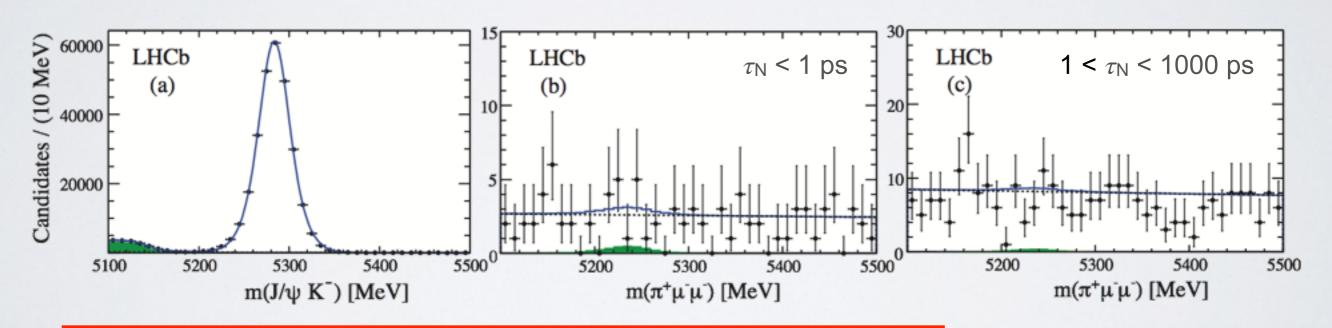
- Neutrinos can be Majorana ($\nu = \overline{\nu}$), or Dirac fermions.
 - Searches done using neutrino-less 2β decay found no signal yet
- B⁻→π⁺μ⁻μ⁻ is a lepton number violating decay, forbidden in the SM: can happen by exchange of a Majorana neutrino
- Sensitive to 250-5000 MeV neutrino mass (m_N) range and up to 1000 ps neutrino lifetime (τ_N)

CLEO
$$\Rightarrow$$
 BR < 1400 x 10⁻⁹ @ 90% CL

PRD 65(2002) 111102

BaBar \Rightarrow BR < 107 x 10⁻⁹ @ 90% CL

PRD 85(2012) 071103


LHCb (0.41fb⁻¹) \Rightarrow BR < 13 x 10⁻⁹ @ 95% CL

PRD 81(2012) 112004

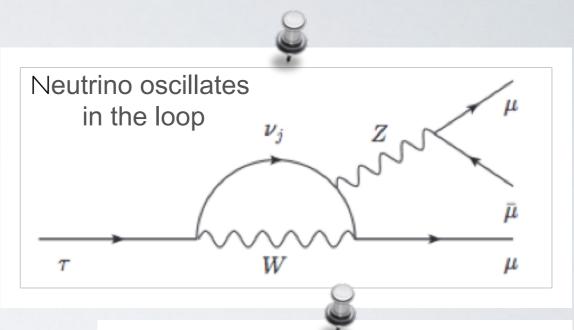
Now using 3fb⁻¹: full data set

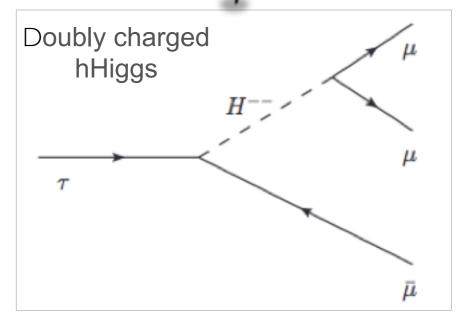
Majorana neutrino search

- Use $B \rightarrow J/\psi(\rightarrow \mu\mu)K$ as normalisation channel
- Two selections optimised for long and short neutrino lifetime:
 - $\tau_{\rm N}$ < 1 ps: the neutrino is considered as coming from the B vertex
 - $\tau_{\rm N}$ > 1 ps: the information from the displaced vertex is used
- No signal found → Limits set using CLs method. Nucl.Instrum.Meth. A434 (1999)

B(B \to πμμ) < 4 x 10⁻⁹ at 95% CL for τ N < 1 ps

L. Pescatore


PRL 112 (2014) 131802


LFV in $\tau \rightarrow \mu \mu \mu$

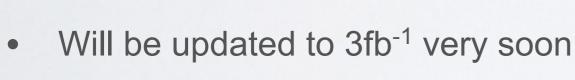
- Forbidden in SM due to lepton flavour conservation
 - Well established (e.g. μ→eγ) but not supported by strong theoretical reasons
- Observation of neutrino oscillation makes LFV possible via loops (BR < 10⁻⁴⁰)
- NP (e.g. doubly charged Higgs)
 can enhance up to BR ~ 10⁻⁷

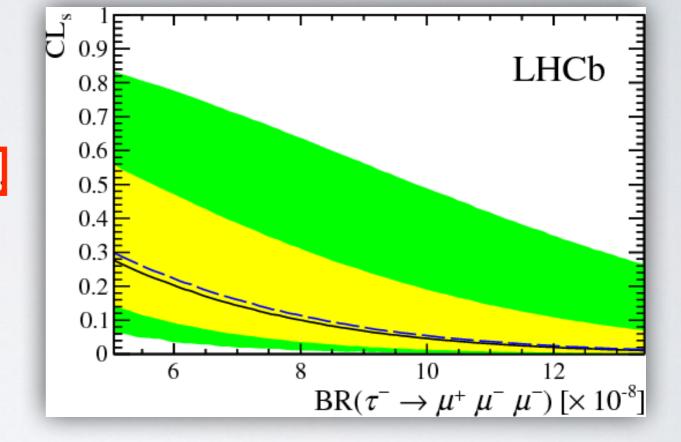
Belle \Rightarrow BR < 2.1 x 10⁻⁸ @ 90% CL PLB 687(2010) 139

BaBar \Rightarrow BR < 3,3 x 10⁻⁸ @ 90% CL PRD 81(2010) 111101

PLB724(2013)036045

HEPFT, 2014


τ → μμμ results


- Using 1fb⁻¹ of data
- Number of signal compatible with number of number of background events

 upper limit set

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)$$
 < 8.0 (9.8) × 10⁻⁸. @90(95)% CL

- First limit at an hadron collider!
- Result compatible with Belle and BaBar limits

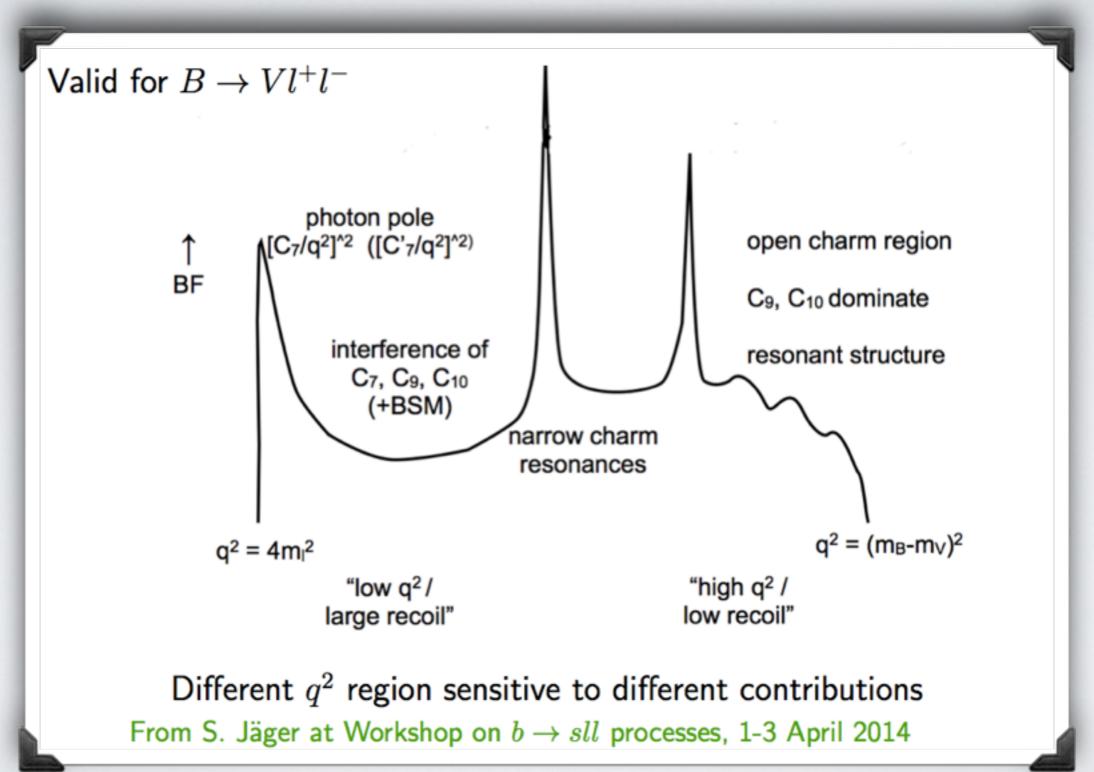
Also limits set on other decays using 1fb⁻¹

PLB724(2013)036045

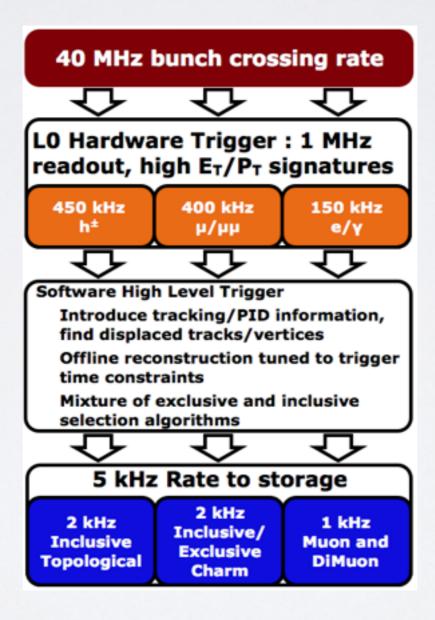
$$\mathcal{B}(\tau^- \to \bar{p}\mu^+\mu^-) < 3.3 (4.3) \times 10^{-7}$$

 $\mathcal{B}(\tau^- \to p\mu^-\mu^-) < 4.4 (5.7) \times 10^{-7}$

@90(95)% CL

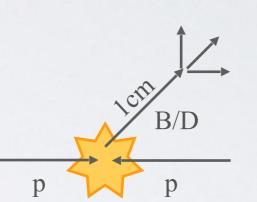

HEPFT, 2014

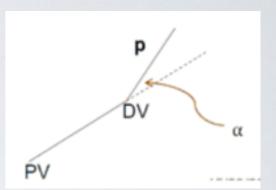
Summary and a look at the future


- The Rare Decay group at LHCb has produced good results last year!
 - → Measurement of a wealth of observables in B→K^(*)μμ decays
 - → Measurement of R_K testing lepton universality
 - \rightarrow First observation of **photon polarisation** in $b\rightarrow s\gamma$ transitions
 - \rightarrow World limit on $B^+ \rightarrow \pi^+ \mu^- \mu^-$ going through Majorana neutrino
 - **→** Competing limits **LFV** in $\tau \rightarrow \mu \mu \mu$ (B $\rightarrow e \mu$, ...)
- And you can expect more in the next year:
 - → All analysis are being updated to 3fb⁻¹ (K*μμ angular analysis very soon)
 - Analysis of Λ_b decays: Λ_b→Λμμ and Λ_b→pKμμ
 - B→K*ee angular analysis and much more...
- Also remember 2015 is close and new data is coming!

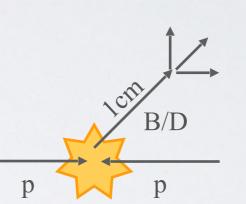
Backup

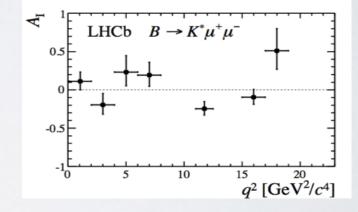
Typical q² spectrum



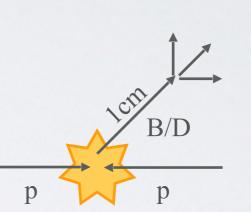

- Trigger: can't save everything on tape!
 - ▶ L0 trigger mainly looking for hits in muon detector or hadronic clusters
 - ▶ 2 level HLT trigger: confirming L0 decision with partial reconstruction

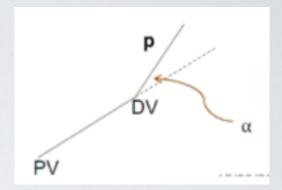
- Trigger: can't save everything on tape!
 - ▶ L0 trigger mainly looking for hits in muon detector or hadronic clusters
 - ▶ 2 level HLT trigger: confirming L0 decision with partial reconstruction
- Pre-selection (off line): usually loose cuts
 - B/D meson flight distance and pointing angle
 - Hadron PID information from RICH
 - Cuts to remove specific peaking background
- Kinematic refit of the decay chain constraining PV and masses of intermediate resonances
 ⇒ yields to a better resolution
- Long-lived particles (mostly ∧ and K_S)
 can be reconstructed with long or downstream tracks
- MVA analysis to remove combinatorial combining any variables (p, p_T, quality variables): most common is BDT from TMVA


- Trigger: can't save everything on tape!
 - ▶ L0 trigger mainly looking for hits in muon detector or hadronic clusters
 - 2 level HLT trigger: confirming L0 decision with partial reconstruction
- Pre-selection (off line): usually loose cuts
 - B/D meson flight distance and pointing angle
 - Hadron PID information from RICH
 - Cuts to remove specific peaking background

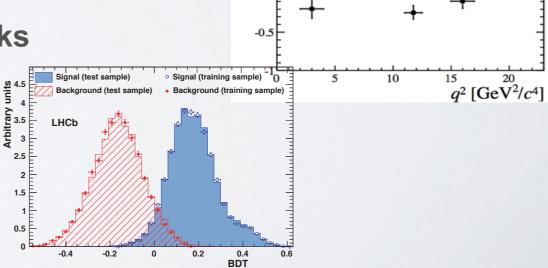

- Kinematic refit of the decay chain constraining PV and masses of intermediate resonances ⇒ yields to a better resolution
- Long-lived particles (mostly ∧ and K_S) can be reconstructed with long or downstream tracks
- MVA analysis to remove combinatorial combining any variables (p, p_T, quality variables): most common is BDT from TMVA

- Trigger: can't save everything on tape!
 - ▶ L0 trigger mainly looking for hits in muon detector or hadronic clusters
 - 2 level HLT trigger: confirming L0 decision with partial reconstruction
- Pre-selection (off line): usually loose cuts
 - B/D meson flight distance and pointing angle
 - Hadron PID information from RICH
 - Cuts to remove specific peaking background

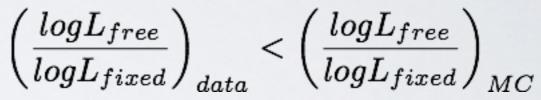




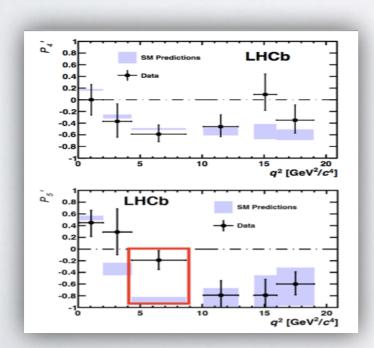
- Kinematic refit of the decay chain constraining PV and masses of intermediate resonances
 - ⇒ yields to a better resolution
- Long-lived particles (mostly ∧ and K_S) can be reconstructed with long or downstream tracks
- MVA analysis to remove combinatorial combining any variables (p, p_T, quality variables): most common is BDT from TMVA



- Trigger: can't save everything on tape!
 - ▶ L0 trigger mainly looking for hits in muon detector or hadronic clusters
 - 2 level HLT trigger: confirming L0 decision with partial reconstruction
- Pre-selection (off line): usually loose cuts
 - B/D meson flight distance and pointing angle
 - Hadron PID information from RICH
 - Cuts to remove specific peaking background

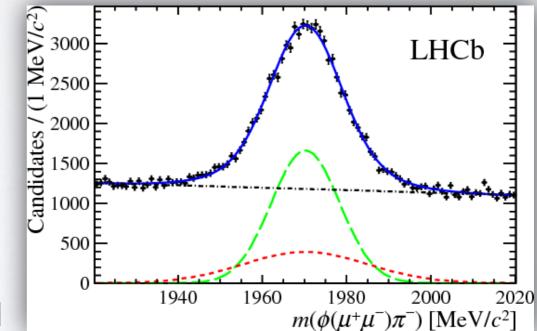


- Kinematic refit of the decay chain constraining PV and masses of intermediate resonances
 - ⇒ yields to a better resolution
- Long-lived particles (mostly ∧ and K_S)
 can be reconstructed with long or downstream tracks
- MVA analysis to remove combinatorial combining any variables (p, p_T, quality variables): most common is BDT from TMVA



Feldman-Cousins method

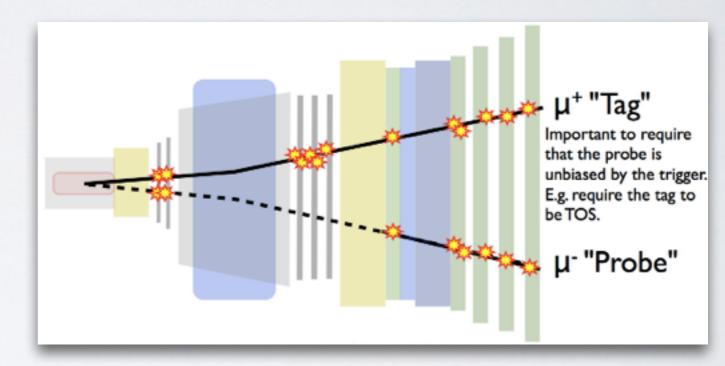
- Feldman-Cousins method plug-in method to extract confidence bands
 - Choose Parameters of Interest (PoI) and fit data with PoI free and fixed
 - ▶ Generate toys with Pol fixed to tested values and nuisance parameters (all other parameters) from fixed fit on data.
 - Fit toys with free and fixed Pol
 - Look how may times log likelihood ratio in data is smaller than MC
 - ▶ Scan values to look for 68%, 95% etc.


Statistica Sinica 19 (2009) 301 arXiv:1109.0714v1

- Starts to be widely used in LHCb
- Allows to consider nuisance parameters: no confidence belt
- Guarantees full coverage
- Returns 2-side intervals and upper limits in a unified approach

τ \rightarrow μμμ analysis method

- Study events in 3D binned space:
 - Likelihood variable based on event topology (BDT): including vertex quality and displacement
 - Likelihood of muon identification (Neural Networks): including information from RICH, calorimeters, muon stations, kinematics
 - Invariant mass of τ candidate
- Using 1fb⁻¹ collected at 7 TeV
- $D_s \rightarrow \phi(\rightarrow \mu\mu)\pi$ for normalisation

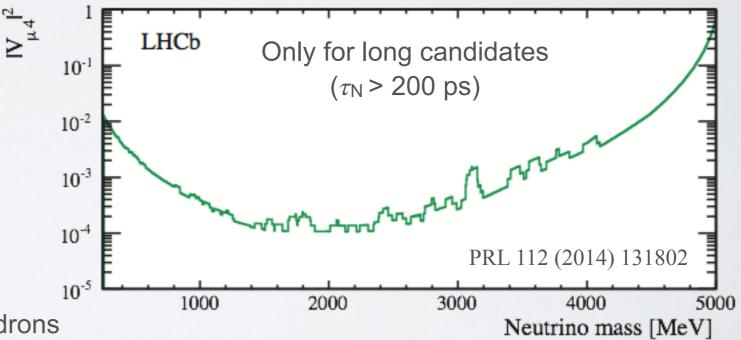

HEPFT, 2014

Normalisation channel PLB724(2013)036045

LHCb

Measuring detection asymmetry

- Attempts were done to measure various detection asymmetry in LHCb and some have been used in CPV measurements
 - 1. Use tag-and probe method:
 - ▶ easy for muons, easy for PID → not so easy for hadron reconstruction
 - 3. In some case is possible to measure detection asymmetries from yields ratios
 - Often polluted by non-zero production asymmetry and nuclear interactions

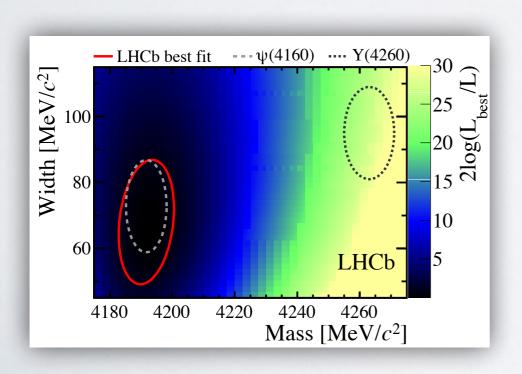

e.g.
$$\left| \frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = \frac{N(D^- \to K^+\pi^-\pi^-)}{N(D^+ \to K^-\pi^+\pi^+)} \times \frac{N(D^+ \to K_s^0\pi^+)}{N(D^- \to K_s^0\pi^-)} \right|$$

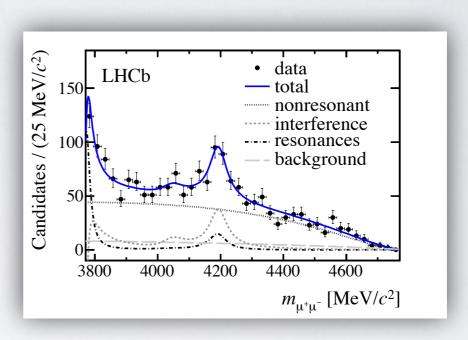
Majorana neutrino: upper limits

Since no signal found a model dependent upper limit on coupling with a fourth generation ($|V_{\mu 4}|$) is also reported as a function of m_N

$$B(B^- \to \pi^+ \mu^+ \mu^-) = \frac{G_F f_B^2 f_\pi^2 m_B^5}{128\pi^2 \hbar} |V_{ub} V_{ud}|^2 \tau_B \left(1 - \frac{m_N^2}{m_B^2}\right) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4$$

- For each m_N a value of |V_{μ4}| is assumed
- ightharpoonup Then Γ_N can be calculated which allows to determine the τ_N dependent efficiency


L. Pescatore


Fully leptonic decays One lepton + hadrons

$$\Gamma_N = \left[3.95m_N^3 + 2.00m_N^5(1.44m_N^3 + 1.14)\right]10^{-13}|V_{\mu 4}|^2,$$

Observation of a resonance in B⁺→K⁺µµ

- B⁺→K⁺µµ has been discovered by Belle in 2001 (PRL 88 2001 021801)
- Resonance found in high q2 region, where K has low recoil
- Two resonance visible:
 - ψ(3770) at low edge
 - Newly observed resonance corresponding at ψ(4160) ψ(4260) rejected at > 4σ

Using
3fb⁻¹
of data

Fits performed constraining to $\psi(4160)$ and unconstraint

Unconstrained		$\psi(4160)$
$\mathcal{B}[\times 10^{-9}]$	$3.9^{+0.7}_{-0.6}$	$3.5^{+0.9}_{-0.8}$
Mass $[MeV/c^2]$	4191^{+9}_{-8}	4190 ± 5
Width [MeV/ c^2]	65^{+22}_{-16}	66 ± 12

PRL 111 (2013) 112003