Backgrounds at future e⁺e⁻ colliders

Major contributors:

- D. Schulter
- H. Burkhardt
- G. Wagner
- N.V. Mokhov
- S.I. Striganov
- A. Vogel
- D. Dannheim
- A. Sailer
- F. Simon

International Linear Collider (ILC)

30 MV/m

500 (up to 1000) GeV, 31 km

2625 bunch crossings (BX)

1 ms

200 ms

Compact Linear Collider (CLIC)

500 (up to 3000) GeV, 13 (48) km

354 BX

20 ms

Drive beam

Backgrounds @ ILC & CLIC, Oleg Markin, ITEP

Machine-related backgrounds

Beam delivery system

- Muons and antimuons (from showers)
- Hard photons
- Neutrons
 (from photo-nuclear reactions)
- Off-energy electrons and positrons

Presence of collimators leads to conversion of beam particles to e^+e^- , $\mu^+\mu^-$, γ and n.

Positions of collimators

Muons can be swept away by spoilers, but at the cost of more neutrons

Muons in the CLIC detector

International Linear Collider (ILC)

30 MV/m

500 (up to 1000) GeV, 31 km $L= 2 \times 10^{34} / \text{cm}^2 \text{s, beam } 650 \times 6 \text{ nm}$

2625 bunch crossings (BX)

1 ms

200 ms

Compact Linear Collider (CLIC)

80 MV/m

500 (up to 3000) GeV. 13 (48) km L= 2.3 x 10 ³⁴/cm²s, beam 200 x 2 nm

354 BX

20 ms

Machine-related backgrounds

Beam delivery system

- Muon and antimuons (from showers)
- Hard photons
- Neutrons
 (from photo-nuclear reactions)
- Off-energy electron and positrons

Interaction point

- Beamstrahlung
- Radiative
 Bhabha scattering

Beamstrahlung: opposite bunches focus each other, emitting photons

Both beamstrahlung and initial state radiation reduce luminosity

Radiative Bhabha scattering is one more source of hard photons at ILC

Photons move along beams and escape through beam pipe

Incoherent pair production at ILC: 76,000 pairs per BX

At CLIC, the coherent pair production dominates: photon + field

Soft electrons and positrons lead to observable background

Bhabha electrons/positrons

High p_t

Focused along beams

Curl up and move longitudinally, hitting innermost detectors, beam pipe and magnets

Beamstrahlung-produced electrons and positrons in the ILC tracker

Removed by software

Soft electrons and positrons lead to observable background

Occupancy of hadronic calorimeter endcaps by background signals

Angular distribution of background particles at the 3 TeV CLIC

Energy of a benchmark reconstructed with different jet-finders and time cuts

Top mass reconstructed with/without γγ → hadrons background overlay

Summary

- Both high collision energy and luminosity of future linear e⁺e⁻ colliders lead to unprecedented beam-related backgrounds
- Background muons load the muon system of detector and should be coped with by a precise time resolution and appropriate system design
- Signals of e⁺e-pairs produced by beamstrahlung photons in tracker can be removed by software
- Background neutrons only load calorimeter's endcaps
- Hadrons from mini-jets produced by beamstrahlung photons contribute to background in the entire electromagnetic calorimeter, but can be rejected by time cuts and by an appropriate jet-finder