Recent results of the OPERA search for $v_{\mu} \rightarrow v_{\tau}$ oscillations

T. OMURA

On behalf of The OPERA Collaboration

Belgium

ULB Brussels

Italy

Bari Bologna

LNĠS

Naples Padova

Rome Salerno

Jinju

Russia

INR RAS Moscow

LPI RAS Moscow

SINP MSU Moscow

ITEP Moscow

Croatia

IRB Zagreb

France

LAPP Annecy IPHC Strasbourg

Japan

Aichi edu. Kobe Nagoya Toho

Nihon

Switzerland

JINR Dubna

Bern

Hamburg

Germany

Israel
Technion Haifa

Turkey METU Ankara

Goal of OPERA

Prove the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation by direct detection of ν_{τ} CC interaction in pure ν_{μ} beam

Requirements:

- High energy v beam for tau production
- High intensity and large target mass for statistics
- Long base line for oscillation
- Micrometric resolution to identify τ kinematics

CERN Neutrino to Gran Sasso

Beam property

<ev></ev>	17 GeV
(νe + ve) / νμ	0.87 %
νμ/νμ	2.1 %
ντ prompt	Negligible

Optimized to maximize $v\tau$ CC cross section

Oscillation probability (2v model)

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2(2\theta_{23}) \cdot \sin^2(1.27 \cdot \Delta m^2_{23} \cdot \frac{L}{E}) \sim 1.7\%$$

(Assuming $\Delta m_{23}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$)

Emulsion Cloud Chamber

- Main target and detector unit
- 56 lead plates (1mm) + 57 emulsion photographic films (0.3 mm)
- 3D track reconstruction with micrometric resolution
- Momentum measurement by MCS

v_{μ} CC	ir	teractic	n	
ν μ >	Prim vert		\µ	

τ decay channel	B.R. (%)
$\tau \rightarrow h$	49.5
$\tau \rightarrow 3h$	15.0
$\tau \rightarrow e$	17.8
$\tau \rightarrow \mu$	17.7

No other lepton at the vertex

The OPERA Detector

Location step (1) Brick Finding

- Event trigger & brick prediction by TT
- 2. Extract most probable brick by Brick Manipulator System
- 3. Detach CS from ECC and develop it
- 4. Validation by scanning CS searching tracks from ν interaction (automatic scanning system)
 - Track found → Develop ECC films
 - Not found \rightarrow extract the 2nd probable brick...

(2) Scanback & Decay search

- Extrapolate track to upstream film by film from CS until stopping point (Scanback)
- 2. Volume scan around stopping point
- 3. Reconstruct high energy tracks
- 4. Vertexing with the scanback track
- Decay daughter search with large impact parameter w.r.t. the vertex

Data taking

1st
$$v_{\tau}$$
 (2009): $\tau \rightarrow h$

NEUTRINO2010

Phys. Lett. B691 (2010) 138

$$3^{rd} \nu_{\tau}$$
 (2011): $\tau \rightarrow \mu$

JPS 2013 Spring Phys. Rev. D 89 (2014) 051102(R)

17.97 x 10¹⁹ POT

Analysis is on going

6604 events were located 6148 decay searched (+~1000 from XXIXth conference)

$$2^{\text{nd}} v_{\tau}$$
 (2011): $\tau \rightarrow 3h$

2012 NEUTRINO2012 JHEP 11 (2013) 036

$$4^{\text{th}} \, \nu_{\tau} \, (2012) : \tau \rightarrow h$$

Seminar @ Gran Sasso (2014 March)
JPS 2014 Spring
NEUTRINO2014

The 4th v_{τ} event $(\tau \rightarrow h)$

1000

Kinematics

	ID	Slopes	P (GeV/c)
1ry	1 parent	-0.144, 0.020	-
	2	-0.046, 0.078	1.9 [1.7, 2.2]
	3	0.131, 0.146	1.1 [1.0, 1.2]
	4	-0.082, 0.352	0.7 [0.6, 0.8]
	γ1	-0.234, 0.062	0.7 [0.6, 0.9]
	γ2	0.113,-0.024	4.0 [2.6, 8.7]
2ry	daughter	-0.088, 0.147	6.0 [4.8, 8.2]

Good picture as tau: Large phi angle (back-to-back) Large Pt at kink (0.82 GeV/c).

Particle ID is important to reject backgrounds from nm CC interaction and determine decay channel

Particle ID

Track follow down was performed on relevant ECC for all tracks

Particle ID

Track 2 is hadron.

Daughter also was judged as hadron by same analysis

→ No muon at 1ry vertex

Criteria

Passed all the cut for $v\tau$

	Using the mean values	Selection criteria
P daughter (GeV/c)	6.0 +2.2	>2
P _t at kink (GeV/c)	0.82 +0.30 -0.16	>0.6
P _t miss at 1ry (GeV/c)	0.55 +0.30 -0.20	<1
Phi (deg)	166 ⁺² ₋₃₁	>90
Kink angle (deg)	137 ± 4	>20
Flight length (um)	1090 ± 30	<2600

Background source

1. Charmed hadron with missed muon

2. Hadronic interaction

3. Large angle scattering of muon

Estimation by MC Validation by OPERA data or test beam.

Oscillation analysis

Data samples 4686 events (979 0μ + 3707 1μ)

2008 – 2009: 1st brick + 2nd brick

2010 – 2012: 1st brick

Decay channel	Signal expectation	Total background	Observed events
t → h	0.4 ± 0.08	0.033 ± 0.006	2
t → 3h	0.57 ± 0.11	0.155 ± 0.03	1
t → m	0.52 ± 0.1	0.018 ± 0.007	1
t → e	0.61 ± 0.12	0.027 ± 0.005	0
Total	2.1 ± 0.42	0.23 ± 0.04	4

Combination of four single channel p-value was calculated in order to take account the difference of background with decay channels

P-value =
$$p^* = \prod_{i=1}^4 p(n_i, b_i) = \prod_{i=1}^4 e^{-b_i} \sum_{j=n_i}^{\infty} \frac{b_i^j}{j!} = 1.03 \text{ x } 10^{-5}$$

 \rightarrow No oscillation was excluded with 4.2 σ significance

Observation of v_{τ} appearance

Oscillation parameter from v_{τ} appearance

First measurement by v_{τ} appearance

$$n_{exp}(\Delta m^2) = \int \Phi(E) \cdot \sigma(E) \cdot oscprob(\Delta m^2, E) \cdot \varepsilon(E) \; dE$$
 flux cross detection section efficiency

90 % C.L. intervals on Δm^2_{23} by Feldman & Cousin method: [1.8 - 5.0] x 10^-3 eV^2 (assuming full-mixing)

Consistent with other experiments

Conclusions

- OPERA aims direct observation of v_{τ} from the $v_{\mu} \rightarrow v_{\tau}$ oscillation .
- 17.97 x 10¹⁹ POT (80% or proposal) of neutrinos were delivered to the detector from 2008 to 2012.
- The analysis on ECC is on going, 6604 neutrino interactions were located up to now.
- The 4th v_{τ} candidate was newly found.
- Observation of oscillation at 4.2σ significance.
- The first measurement of Δm^2_{23} by appearance mode was done. The value $[1.8-5.0] \times 10^{-3}$ (90 % C.L.) is consistent with other experiments.

Backup

Automatic scanning system

Japanese Scanning System (S-UTS)

European Scanning System (ESS)

Scanning speed/system: 75cm2/h x 5 system

Scanning speed/system: 20cm2/h x 10 system

The Scanning analysis is divided half-and-half to Japanese and European lab.

Charm control sample

	expected	Data
1 prong	30 ± 4	19
2 prong	18 ± 2	22
3 prong	5 ± 1	5
4 prong	0.9 ± 0.2	4
toal	54 ± 4	50

Phi: The angle between 1ry muon and charm in transverse plain

Charm hadrons have near mass and lifetime as tau

Guarantee Decay search efficiency

Measured length x density, Lp

Lp for the track = $604 \text{ g/cm}^2 \text{ (} < 660 \text{ g/cm}^2\text{)}$

- Prob. for a μ to cross ≤ 12 planes $\sim 0.35\%$
- Prob. for a π to cross \geq 12 planes \sim 10.2%

