

Physics at Belle experiment

Mikhail Shapkin Institute for High Energy Physics, Protvino Russia

For the Belle Collaboration

XXX-th International Workshop on High Energy Physics "Particle and Astroparticle Physics, Gravitation and Cosmology: Predictions, Observations and new Projects"

Experiment and dataset

- ➤ Multitasking magnetic spectrometer that operated at KEKB asymmetricenergy e⁺e⁻ collider in Japan
- Recorded the data at various Υ(nS) resonances till June 2010

Cross sections and numbers of events

$$e^+e^- > b\overline{b} \ (\Upsilon(5S)) -> B^{(*)}\overline{B}^{(*)}, \ B^{(*)}\overline{B}^{(*)}\pi, \ B\overline{B}\pi\pi, \ B_s^{(*)}\overline{B}_s^{(*)}, \ \Upsilon(1S)\pi\pi, \Upsilon X ...$$

$$\sigma(b\bar{b}) = 1.1 \text{ nb } N_{b\bar{b}} = 1.3 \times 10^9 \ \sigma(c\bar{c}) = 1.3 \text{ nb } N_{c\bar{c}} = 2.0 \times 10^9 \ \sigma(\tau\tau) = 0.9 \text{ nb } N_{\tau\tau} = 1.4 \times 10^9$$

B-factories are also charm- and τ -factories!

Recent Belle results

- Charm mixing in D \rightarrow K π decays PRL 112, 111801 (2014)
- Mixing and CPV in D $\to K_S^0 \pi^+ \pi^-$ PRD 89, 091103 (R) (2014)
- Lifetime of τ-lepton
 PRL 112, 031801 (2014)
- First observation of the $Z_b^0(10610)$ in Dalitz Analysis of $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0$ PRD 88, 052016 (2013)
- Observation of $e+e- \to \pi^+\pi^-\pi^0\chi_{bj}$ and search for $X_b\to\omega\Upsilon(1S)$ at $\sqrt{s}\sim 10.867~{\rm GeV}$

To be submitted to PRL

$D^0 \overline{D}{}^0$ mixing in $D \to K\pi$ decays

- Measure the time-dependent ratio of the $D^0 \to K^+\pi^-$ (wrong-sign) to $D^0 \to K^-\pi^+$ (right-sign) decay rates
- □ Tag RS and WS decays through the decay chain $D^{*+} \to D^0 (K^{\mp} \pi^{\pm}) \pi_s^+$ by comparing charge of the pion from the *D* decay with that from the *D** decay

"Wrong-sign" $D^{*+} \to D^0 \pi^+, D^0 \to K^+ \pi^-$ interference: mixing, double Cabibbo-suppression (DCS)

$$R(\tilde{t}/\tau) \equiv \frac{\Gamma_{\rm WS}(\tilde{t}/\tau)}{\Gamma_{\rm RS}(\tilde{t}/\tau)} \approx R_D + \sqrt{R_D} \ y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

Mixing
$$\begin{cases} x \equiv \Delta m/\Gamma & x' \equiv x\cos\delta + y\sin\delta \\ y \equiv \Delta\Gamma/2\Gamma & y' \equiv y\cos\delta - x\sin\delta \end{cases}$$

$$\delta = \text{relative phase}$$

DCS
$$R_D \equiv \Delta\Gamma(DCS)/\Delta\Gamma(CF)$$

☐ Take the resolution effect into account in the measurement of mean decay time of the tagged D's

Event yields in RS and WS decays

- Signal: A sum of a Gaussian and a Johnson distribution of common mean
 - Biometrika 36, 149 (1949)
- Background: An empirical threshold function $(x m_{\pi})^{\alpha} e^{-\beta(x m_{\pi})}$

Observation of D^0 - \overline{D}^0 mixing

- \square No mixing hypothesis is ruled out at the 5.1 standard deviation (σ) level
- \square Constitutes the first observation of D^0 - \overline{D}^0 mixing in e^+e^- collisions

CP violation in charm decays

- ☐ Provides an interesting test bed for new physics as the standard model (SM) predicts a very small asymmetry, owing to
 - ➤ Large GIM/CKM suppression
 - Lack of a large hierarchy in the down-type quark masses
- Typical SM value of the order of 10⁻³ → most promising candidates to study are singly Cabibbo-suppressed (SCS) decays

 Grossman, Kagan and Nir PRD 75, 036008 (2007)
- ☐ While talking about a percentage effect, we need a good control on the SM predictions, something that is in general lacking in this sector due to long-distance effects

An example of "short vs. long"

□ Further, with D^0 - \overline{D}^0 mixing being firmly established, what about CP violation (CPV) in the mixing or due to interference between mixing and decay?

Study of mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$

 \square Determine D^0 - \overline{D}^0 mixing and CPV effects by studying the time-dependent decay rate of self-conjugated $D^0 \to K_S^0 \pi^+ \pi^-$ decays

 \square Expressing $A_f(\bar{A}_f)$, amplitude of the $D^0(\bar{D}^0)$ decay into $f \equiv K_S^0 \pi^+ \pi^-$, as a function of the Dalitz plot variables $(m_{K_c^0\pi^+}^2, m_{K_c^0\pi^-}^2)$, the corresponding timedependent decay rates are:

$$\begin{split} &|\mathcal{M}(f,t)|^2 = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_f|^2 + |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cosh(\Gamma y t) \\ &+ (|\mathcal{A}_f|^2 - |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cos(\Gamma x t) \\ &+ 2\Re(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_f^*) \sinh(\Gamma y t) - 2\Im(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_f^*) \sin(\Gamma x t) \} \end{split} \\ \end{split}$$

$$\begin{aligned} &|\overline{\mathcal{M}}(f,t)|^2 = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{\bar{f}}|^2 + |\frac{p}{q}|^2 |\mathcal{A}_f|^2) \cosh(\Gamma y t) \\ &+ (|\mathcal{A}_{\bar{f}}|^2 - |\frac{p}{q}|^2 |\mathcal{A}_f|^2) \cos(\Gamma x t) \\ &+ 2\Re(\frac{p}{q} \mathcal{A}_f \mathcal{A}_{\bar{f}}^*) \sinh(\Gamma y t) - 2\Im(\frac{p}{q} \mathcal{A}_f \mathcal{A}_{\bar{f}}^*) \sin(\Gamma x t) \} \end{aligned}$$

- ho Γ is the mean decay width of the two mass eigenstates: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$
- \triangleright x and y are the D^0 - \overline{D}^0 mixing parameters, defined earlier
- ho and q are complex coefficients that satisfy $|p|^2 + |q|^2 = 1$ in case of no CP violation, whereas possible CPV can lead to $q/p \neq 1$

Mixing and CPV results from $D^0 \to K_S^0 \pi^+ \pi^-$

☐ Time-dependent fit to the Dalitz plot (shown below together with one of its projections)

Events/100fs	Lifetime of D ⁰ $= 410.3 \pm 0.4 \text{ fs}$
Events	
10 ³	
10 ²	<u> </u>
-5	0 0 2000 4000 Proper time (fs)

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}^{+0.03}_{-0.09}^{+0.06}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
1	q/p	$0.90^{+0.16}_{-0.15}^{+0.05}_{-0.04}^{+0.06}_{-0.05}$
l	$arg(q/p)(^{\circ})$	$-6 \pm 11 \pm 3^{+3}_{-4}$

Assume no direct CP violation \Rightarrow $A_f = \bar{A}_f$ for the $K_S^0 \pi^+ \pi^-$ mode

- \triangleright 2.5 σ away from the no-mixing hypothesis
- No evidence for indirect CP violation

Measurement of τ -lepton lifetime, motivation

Precise measurement of the tau lifetime is necessary for the tests of lepton universality in the SM: $g_e = g_{\mu} = g_{\tau}$

$$\Gamma(L^{-} \to \ell^{-} \bar{\nu}_{\ell} \nu_{L}(\gamma)) = \frac{\mathcal{B}(L^{-} \to \ell^{-} \bar{\nu}_{\ell} \nu_{L}(\gamma))}{\tau_{L}} = \frac{g_{L}^{2} g_{\ell}^{2}}{32 M_{W}^{4}} \frac{m_{L}^{5}}{192 \pi^{3}} F_{\text{corr}}(m_{L}, m_{\ell})$$

$$F_{\text{corr}}(m_{L}, m_{\ell}) = f(x) \left(1 + \frac{3}{5} \frac{m_{L}^{2}}{M_{W}^{2}} \right) \left(1 + \frac{\alpha(m_{L})}{2\pi} \left(\frac{25}{4} - \pi^{2} \right) \right)$$

$$f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x, \ x = m_{\ell}/m_{L}$$

$$\mathcal{B}(\mu^{-} \to e^{-} \bar{\nu}_{e} \nu_{\mu}(\gamma)) = 1$$

$$\frac{g_{\tau}}{g_{e}} = \sqrt{\mathcal{B}(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}(\gamma)) \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{F_{\text{corr}}(m_{\mu}, m_{e})}{F_{\text{corr}}(m_{\tau}, m_{\mu})}}, \ \frac{g_{\tau}}{g_{e}} = 1.0024 \pm 0.0021 \ (\text{HFAG2012})$$

$$\frac{g_{\tau}}{g_{\mu}} = \sqrt{\mathcal{B}(\tau^{-} \to e^{-} \bar{\nu}_{\mu} \nu_{\tau}(\gamma)) \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{F_{\text{corr}}(m_{\mu}, m_{e})}{F_{\text{corr}}(m_{\tau}, m_{e})}}, \ \frac{g_{\tau}}{g_{\mu}} = 1.0006 \pm 0.0021 \ (\text{HFAG2012})$$

Measurement of τ -lepton lifetime, motivation

S. Schael et al. [ALEPH, DELPHI, L3, OPAL, LEP EWG] Phys. Rep. 532, 119 (2013)

$$rac{2\mathcal{B}(extbf{W}
ightarrow au
u_{ au})}{\mathcal{B}(extbf{W}
ightarrow \mu
u_{\mu}) + \mathcal{B}(extbf{W}
ightarrow extbf{e}
u_{e})} = 1.066 \pm 0.025$$

 2.6σ deviation from the Standard Model

Measurement of τ -lepton lifetime, method

We analyze $e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\pi^+\pi^+\pi^-\bar{\nu}_{\tau}, \ \pi^+\pi^-\pi^-\nu_{\tau})$ events.

- \bullet τ momentum direction is determined with two-fold ambiguity in CMS, for the analysis we use the average axis.
- Asymmetric-energy layout of experiment allows us to determine $\tau^+\tau^-$ production point in LAB independently from the position of beam IP.
- Possibility to test CPT conservation measuring τ^- and τ^+ lifetimes separately.

Measurement of τ -lepton lifetime, selections

Use the data sample of $\int Ldt = 711 \text{ fb}^{-1} \text{ with } N_{\tau\tau} = 650 \times 10^6$

Selection criteria:

- Event is separated into two hemispheres in CMS, Thrust>0.9.
- Each hemisphere contains 3 charge pions with the ±1 net charge.
- There are no additional K_S^0 , Λ , π^0 candidates. Number of additional photons $N_\gamma < 6$ with $E_\gamma^{\rm TOT} < 0.7$ GeV.
- $ightharpoonup P_{\perp}(6\pi) > 0.5 \; {
 m GeV}/c$, 4 ${
 m GeV}/c^2 < M_{
 m inv}(6\pi) < 10.25 \; {
 m GeV}/c^2$.
- Pseudomass $\sqrt{M_h^2 + 2(E_{\text{beam}} E_h)(E_h P_h)} < 1.8 \text{ GeV/}c^2$, $h = (3\pi)^-, (3\pi)^+.$
- Cuts on the quality parameters of the vertex fits and tau axis reconstruction.
- Minimal distance between τ^- and τ^+ axes in LAB dl < 0.02 cm.

1148360 events were selected with \sim 2% background contamination, the main background comes from $e^+e^- \rightarrow q\bar{q}$ (q=u, d, s).

Fit of proper time distributions

$$\begin{split} \mathcal{P}(x) &= \mathcal{N} \int e^{-x'/\lambda_{T}} R(x-x';\vec{P}) dx' + \mathcal{N}_{uds} R(x;\vec{P}) + \mathcal{P}_{cb}(x), \\ R(x;\vec{P}) &= (1-2.5x) \cdot \exp\left(-\frac{(x-P_{1})^{2}}{2\sigma^{2}}\right), \end{split}$$

$$\sigma = P_2 + P_3|x - P_1|^{1/2} + P_4|x - P_1| + P_5|x - P_1|^{3/2}$$

- Free parameters of the fit: λ_{τ} , \mathcal{N} , $\vec{P} = (P_1, ..., P_5)$
- λ_{τ} estimator of $c\tau_{\tau}$, $c\tau_{\tau} = \lambda_{\tau} + \Delta_{corr}$, Δ_{corr} is determined from MC;
- $ightharpoonup R(x; \vec{P})$ detector resolution function;
- N_{uds} contribution of background from $e^+e^- \rightarrow q\bar{q} \; (q=u,\;d,\;s)$ (predicted by MC)
- $\mathcal{P}_{cb}(x)$ PDF for background from $e^+e^- \to q\bar{q} \ (q=c,\ b)$ (fixed from MC)

From the fit of experimental data $\lambda_{\tau}=86.53\pm0.16~\mu\text{m}$, applying correction $\Delta_{\text{corr}}=0.46~\mu\text{m}$ we got: $c\tau_{\tau}=86.99\pm0.16~\mu\text{m}$

x (cm)

Measurement of τ -lepton lifetime, result

Systematic uncertainties

Source	$\Delta c \tau$ (μ m)	
Silicon vertex	0.090	
detector alignment	0.030	
Asymmetry fixing	0.030	
Fit range	0.020	
Beam energy, ISR, FSR	0.024	
Background contribution	0.010	
au-lepton mass	0.009	
Total	0.101	

$$c\tau_{\tau} = (86.99 \pm 0.16(\text{stat}) \pm 0.10(\text{syst})) \,\mu\text{m}.$$

$$\tau_{\tau} = (290.17 \pm 0.53(\text{stat}) \pm 0.33(\text{syst})) \,\text{fs}.$$

$$|\tau_{\tau^{+}} - \tau_{\tau^{-}}|/\tau_{\text{average}} < 7.0 \times 10^{-3} \,\text{at } 90\% \,\text{CL}.$$

Lepton universality

$$g_{ au}/g_{ extsf{e}} = 1.0024 \pm 0.0021 ext{ (HFAG2012)}$$
 $\mathbf{g}_{ au}/\mathbf{g}_{ extsf{e}} = \mathbf{1.0031} \pm \mathbf{0.0016} ext{ (new Belle } au_{ au})$ $g_{ au}/g_{\mu} = 1.0006 \pm 0.0021 ext{ (HFAG2012)}$ $\mathbf{g}_{ au}/\mathbf{g}_{\mu} = \mathbf{1.0013} \pm \mathbf{0.0016} ext{ (new Belle } au_{ au})$

Puzzles of $\Upsilon(5S)$ decays

Anomalous production of $\Upsilon(nS) \pi^+\pi^-$ with 21.7 fb⁻¹

PRD82,091106R(2010)

PRL100,112001(2008)	$\Gamma(\text{MeV})$
$\Upsilon(5S) \to \Upsilon(1S)\pi^+\pi^-$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(5S) \to \Upsilon(3S)\pi^+\pi^-$	$0.52^{+0.20}_{-0.17} \pm 0.10$
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	0.0060
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$	0.0009
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	0.0019

- (1) Rescattering $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$ Simonov JETP Lett 87,147(2008)
- (2) Exotic resonance Y_b near $\Upsilon(5S)$ analogue of Y(4260) resonance with anomalous $\Gamma(J/\psi \pi^+\pi^-)$

Dedicated energy scan \Rightarrow shapes of R_b and $\sigma(\Upsilon \pi \pi)$ different (2 σ)

 $\Upsilon(5S)$ is very interesting and not yet understood Finally Belle recorded 121.4fb⁻¹ data set at $\Upsilon(5S)$

Observation of $h_b(1P,2P)$

 $e^+e^- \rightarrow \Upsilon(5S) \rightarrow (h_b(nP) \pi^+\pi^- - reconstructed, use M_{miss}(\pi^+\pi^-)$

Large h_b(1,2P) production rates

c.f. CLEO e⁺e⁻ $\rightarrow \psi(4170) \rightarrow h_c \pi^+\pi^-$

 $h_b(nP)$ decays are a source of $\eta_b(mS)$

Observation of $h_b(1P,2P) \rightarrow \eta_b(1S) \gamma$

First measurement $\Gamma = 10.8^{+4.0}_{-3.7}^{+4.5}_{-2.0}^{+4.5}$ MeV

Belle result decreases tension with theory

as expected

First evidence for $\eta_b(2S)$

Mizuk et al. Belle PRL 109 (2012) 232002

$$\Delta M_{HF}(2S) = 24.3^{+4.0}_{-4.5} \text{ MeV}$$

First measurement

$$\Gamma(2S)$$
 = 4 ± 8 MeV, < 24MeV @ 90% C.L. expect ~4MeV

Branching fractions BF[h_b(1P) $\rightarrow \eta_b(1S) \gamma$] = 49.2±5.7^{+5.6}_{-3.3} % BF[h_b(2P) $\rightarrow \eta_b(1S) \gamma$] = 22.3±3.8^{+3.1}_{-3.3} % Expectations 41% Godfrey Rosner PRD66,014012(2002) 13% BF[h_b(2P) $\rightarrow \eta_b(2S) \gamma$] = 47.5±10.5^{+6.8}/_{7.7}% 19%

c.f. BESIII BF[
$$h_c(1P) \rightarrow \eta_c(1S) \gamma$$
] = 54.3±8.5 % 39%

Anomalies in $\Upsilon(5S) \rightarrow (bb)\pi^+\pi^-$ transitions

Belle: PRL100, 112001 (2008) $_{\sim 100}$ $\Gamma[\Upsilon(5S) \to \Upsilon(1,2,3S) \pi^+\pi^-] >> \Gamma[\Upsilon(4,3,2S) \to \Upsilon(1S) \pi^+\pi^-]$

 \leftarrow Rescattering of on-shell B^(*) $\overline{B}^{(*)}$?

Belle: PRL108, 032001 (2012)

 $\Upsilon(5S) \rightarrow h_b(1,2P) \pi^+\pi^-$ are not suppressed

 h_b production mechanism? \Rightarrow Study resonant structure in h_b (mP) $\pi^+\pi^-$

Resonant substructure of $\Upsilon(5S) \rightarrow h_b(1P) \pi^+\pi^-$

 $P(h_b) = P_{\Upsilon(5S)} - P(\pi^+\pi^-) \Rightarrow M(h_b\pi^+) = MM(\pi^-) \Rightarrow measure \Upsilon(5S) \rightarrow h_b\pi\pi yield$ in bins of $MM(\pi)$

Fit function
$$|BW(s, M_1, \Gamma_1) + ae^{i\phi}BW(s, M_2, \Gamma_2) + be^{i\psi}|^2 \frac{qp}{\sqrt{s}}$$

$$\mathrm{M_1}$$
 = $10605.1 \pm 2.2^{\,+3.0}_{\,-1.0}$ MeV/c² ~B $\overline{\mathrm{B}}$ * threshold

$$\Gamma_1 = 11.4^{+4.5}_{-3.9}^{+2.1}_{-1.2} \text{ MeV}$$
 $a = 1.8^{+1.0}_{-0.7}^{+0.1}_{-0.5}$

$$\rm M_2$$
 = $10654.5\pm2.5\,^{+1.0}_{-1.9}~\rm MeV/c^2~\sim\!B^*\overline{B}^*$ threshold

$$\Gamma_2 = 20.9^{+5.4}_{-4.7}^{+2.1}_{-5.7} \text{ MeV}$$

$$a = 1.8 ^{+1.0}_{-0.7} ^{+0.1}_{-0.5}$$

$$\varphi = 188 ^{+44}_{-58} ^{+4}_{-9} \text{ degree}$$

Significances

 $2 \text{ vs.} 1 : 7.4 \sigma \text{ (6.6 \sigma w/ syst)}$

 $2 \text{ vs.}0 : 18\sigma \text{ (16}\sigma \text{ w/ syst)}$

Resonant substructure of $\Upsilon(5S) \rightarrow h_b(2P) \pi^+\pi^-$

$$M_1 = 10605.1 \pm 2.2^{\,+3.0}_{\,-1.0} \,\,\mathrm{MeV/c^2}$$

$$\Gamma_1 = 11.4^{+4.5}_{-3.9}^{+2.1}_{-1.2} \text{ MeV}$$

$$M_2 = 10654.5 \pm 2.5 ^{+1.0}_{-1.9} \text{ MeV/c}^2$$

$$\Gamma_2 = 20.9^{+5.4}_{-4.7}^{+2.1}_{-5.7} \text{ MeV}$$

$$a = 1.8^{\,+1.0}_{\,-0.7}^{\,+0.1}_{\,-0.5}$$

$$\varphi = 188^{+44}_{-58}^{+44}_{-9} \text{ degree}$$

 $10596 \pm 7^{+5}_{-2} \text{ MeV/c}^2$

$$16^{\,+16}_{\,-10}\,{}^{+13}_{\,-4}~{
m MeV}$$

 $10651 \pm 4 \pm 2 \text{ MeV/c}^2$

$$12^{+11}_{-9}^{+8}_{-2}$$
 MeV

$$1.3^{\,+3.1}_{\,-1.1}\,^{\,+0.4}_{\,-0.7}$$

$$255^{\,+56}_{\,-72}^{\,+12}_{\,-183}\,{
m degree}$$

Significances

2 vs.1 : 2.7σ (1.9σ w/ syst)

2 vs.0 : 6.3σ (4.7σ w/ syst)

Exclusive $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^+\pi^-$

$$\Upsilon(5S) \rightarrow \Upsilon(\mathbf{nS}) \pi + \pi -$$
 $\Upsilon(\mathbf{nS}) \rightarrow \mu + \mu -$ $(n = 1,2,3)$

Resonant structure of $\Upsilon(5S) \rightarrow (b\bar{b})\pi^+\pi^-$

Rel. phase, degrees

Summary of Z_b parameters

 $-13 \pm 13^{+17}_{-8}$

 $58 \pm 43^{+4}_{-9}$

 $Z_b(10610)$ yield ~ $Z_b(10650)$ yield in every channel Relative phases: 0° for $\Upsilon \pi \pi$ and 180° for $h_b \pi \pi$

 $-9 \pm 19^{+11}_{-26}$

First observation of $Z_b^0(10610)$ in $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0$ PRD 88, 052016 (2013)

$\pi^0\pi^0$ missing mass for $\Upsilon \rightarrow \mu^+\mu^-$

$\pi^0\pi^0$ missing mass for $\Upsilon \rightarrow e^+e^-$

$$\sigma(e^+e^- \to \Upsilon(1S)\pi^0\pi^0) = (1.16 \pm 0.06 \pm 0.10) \text{ pb},$$

$$\sigma(e^+e^- \to \Upsilon(2S)\pi^0\pi^0) = (1.87 \pm 0.11 \pm 0.23) \text{ pb},$$

$$\sigma(e^+e^- \to \Upsilon(3S)\pi^0\pi^0) = (0.98 \pm 0.24 \pm 0.15) \text{ pb}.$$

Dalitz analysis of $\Upsilon(nS)\pi^0\pi^0$ systems

Results of the Dalitz analysis of $\Upsilon(nS)\pi^0\pi^0$

Significance of Z_b^0 (10610) in $\Upsilon(2S)\pi^0\pi^0$ is 5.3 σ Significance of Z_b^0 (10610) in $\Upsilon(3S)\pi^0\pi^0$ is 4.7 σ Z_b^0 (10610) in $\Upsilon(1S)\pi^0\pi^0$ is not significant Z_b^0 (10650) in $\Upsilon(nS)\pi^0\pi^0$ is not significant

Study of reaction $e^+e^- \rightarrow \pi^+\pi^-\pi^0\chi_{bj}$ at $\sqrt{s}=10.867$ GeV

Results of the fit of scatter plot

Mode	Yield	$\Sigma\left(\sigma\right)$	ε (%)	σ_B (pb)	$\mathcal{B}(10^{-3})$	$\sigma_{sys}^{1}/\sigma_{sys}^{2}$ (%)
$\pi^{+}\pi^{-}\pi^{0}\chi_{b0}$	< 13.6	1.0	6.43	< 3.1	< 6.3	23/24
$\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$	80.1 ± 9.9	12	6.61	$0.90 \pm 0.11 \pm 0.10$	$1.85 \pm 0.23 \pm 0.23$	11/12
$\pi^{+}\pi^{-}\pi^{0}\chi_{b2}$	28.6 ± 6.5	5.9	6.65	$0.57 \pm 0.13 \pm 0.07$	$1.17 \pm 0.27 \pm 0.14$	11/12
$\omega\chi_{b0}$	< 7.5	0.5	6.35	< 1.9	< 3.9	28/28
$\omega\chi_{b1}$	59.9 ± 8.3	12	6.53	$0.76 \pm 0.11 \pm 0.10$	$1.57 \pm 0.22 \pm 0.21$	12/13
$\omega\chi_{b2}$	12.9 ± 4.8	3.5	6.56	$0.29 \pm 0.11 \pm 0.08$	$0.60 \pm 0.23 \pm 0.15$	25/25

Search for the signal $e^+e^- \rightarrow \gamma X_b \rightarrow \gamma \omega \Upsilon(1S) \rightarrow \gamma \pi^+ \pi^- \pi^0 I^+ I^-$

$$\mathcal{B}(\Upsilon(5S) \to \gamma X_b)\mathcal{B}(X_b \to \omega \Upsilon(1S)) < 2.9 \times 10^{-5} \text{ at } 90\% \text{ C.L.}$$

Conclusions

- Belle continues to produce high quality results after five years since the last data taking
- A part of those are presented here:

First observation of D⁰-D

0 mixing

2.5 σ indication for D⁰-D⁰ mixing and no sign of CPV in D \to K_S⁰ $\pi^+\pi^-$

Measurement of the τ -lepton lifetime with the precision better than in PDG

Observation of the Z⁰(10610) in $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0$

Observation of the e⁺e⁻ $\to \pi^+\pi^-\pi^0\chi_{bJ}$ and upper limit for $X_b\to\omega\Upsilon(1S)$

 The unique explorations at the intensity frontier will continue with the start of Belle II