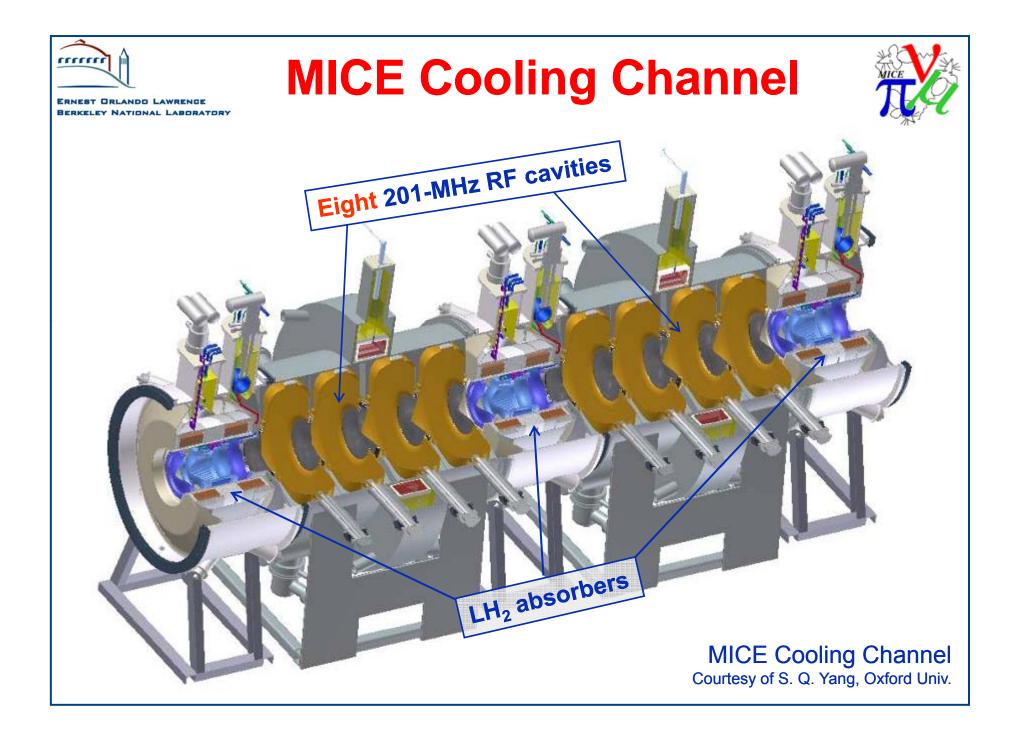


ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Update on 201-MHz RF Cavity Construction (Plan) for MICE

Derun Li and S. Virostek

Center for Beam Physics Lawrence Berkeley National Laboratory


MICE-20th Collaboration Meeting RAL, UK February 10 – 13, 2008

MICE Cavity Design

- Based on the design of 201-MHz cavity for MUCOOL
 - Cavity body
 - Ports for power coupler, vacuum and probes
 - RF power loop coupler and ceramic RF window
 - Curved Beryllium window
 - Tuners
 - Interface and integration with RFCC module
- Summary
 - Status and fabrication plan
 - Techniques developed for MUCOOL cavity
 - Spinning, port extruding, curved Be windows, RF couplers

ERNEST ORLANDO LAWRENCE

MICE RF Cavity

- Eight 201-MHz cavities + with materials for two more spares
- Baseline design: 201-MHz for MUCOOL, but
 - Cavity body profile needs to be modified
 - Resonant frequency
 - Better estimation of spring back after spinning
 - Port extruding
 - Port interface is different from the MUCOOL cavity
 - RF coupler and ceramic window
 - Same as the MUCOOL cavity with Toshiba ceramic windows for SNS
 - Curved Beryllium windows
 - Modified design to better control silver alloy flow during the brazing
 - Tuners and interface with RFCC module
 - Post-processing: Water cooling pipes, cleaning (EP & water rinsing), low power measurement, tuning, assembly and shipping

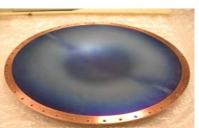
- The cavity design parameters
 - Frequency: 201.25 MHz
 - $\beta = 0.87$

111111

ERNEST ORLANDO LAWRENCE

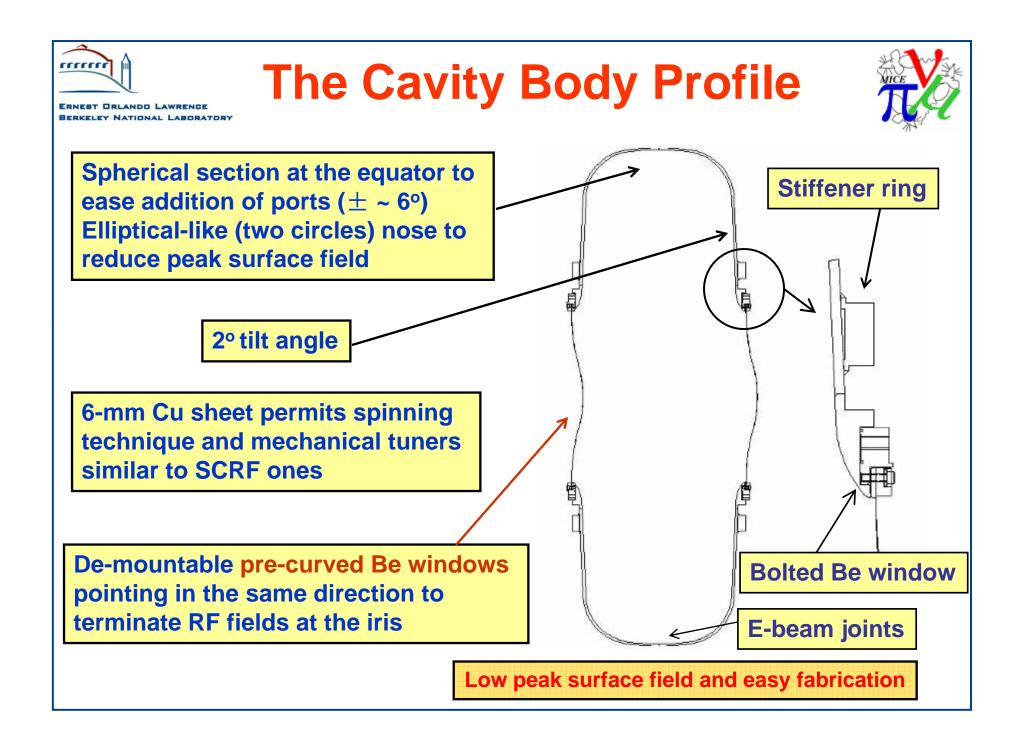
- Shunt impedance (VT²/P): ~ 22 M Ω /m
- Quality factor (Q_0): ~ 53,500
- Be window radius and thickness: 21-cm and 0.38-mm
- Nominal parameters for cooling channels in a muon collider or a neutrino factory and MICE
 - ~ 16 MV/m (~ 8 MV/m) peak accelerating field
 - Peak input RF power ~ 4.6 MW (~ 1 MW) per cavity (85% of Q_0 , 3τ filling)
 - Average power dissipation per cavity ~ 8.4 kW (~ 1 kW at 1 Hz repetition rate and 1 ms pulse length)
 - Average power dissipation per Be window
 - ~ 100 watts (~ 12 watts)

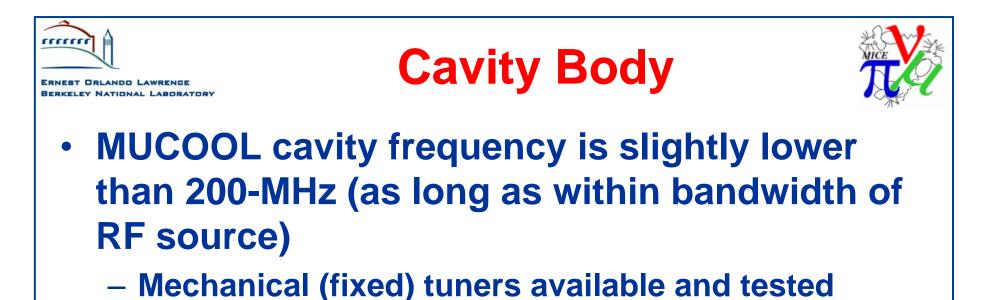
MUCOOL Cavity Review



ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

rrrr







- Design and engineering at LBNL
- Half shells spun at Acme in Minnesota
- Parts made in Univ. of Mississippi and LBNL
- E-beam welding & port-pulling, cleaning and EP at J-Lab, NASA
- Coupler tests at SNS, Oak Ridge National Lab
- Final assembly and high power tests at MTA, FNAL (March-2006) and reached 16-MV/m without external magnetic field

- MICE cavities
 - Target frequency is 201.250-MHz
 - One RF source (tube) powers more than one cavity
 - Each cavity will be made (spinning) to frequency very close to 201-MHz by modifying the mold used for spinning
 - Frequency shifts by ports and curved Be windows
 - Conceptual tuner designs (fine tuning)

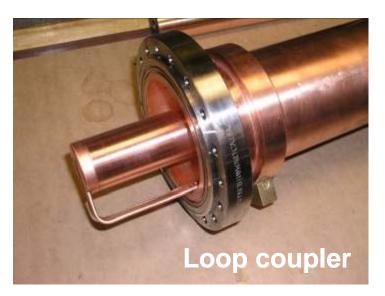
Local annealing of ports

Cavity ports being extruded (pulled)

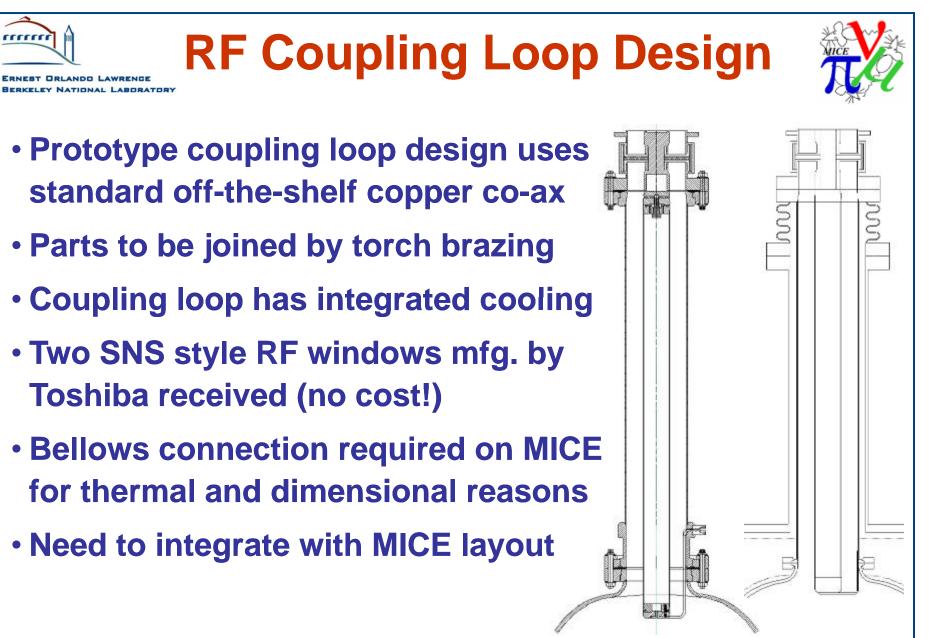
Port flange e-beam weld

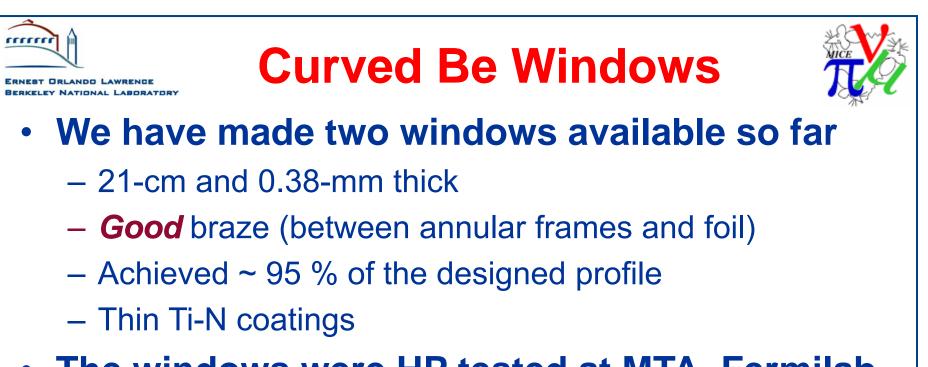
Vacuum leak!

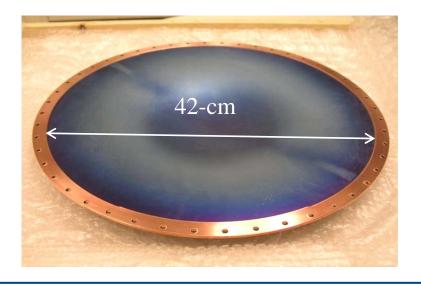
Finished cavity port


Extruded port

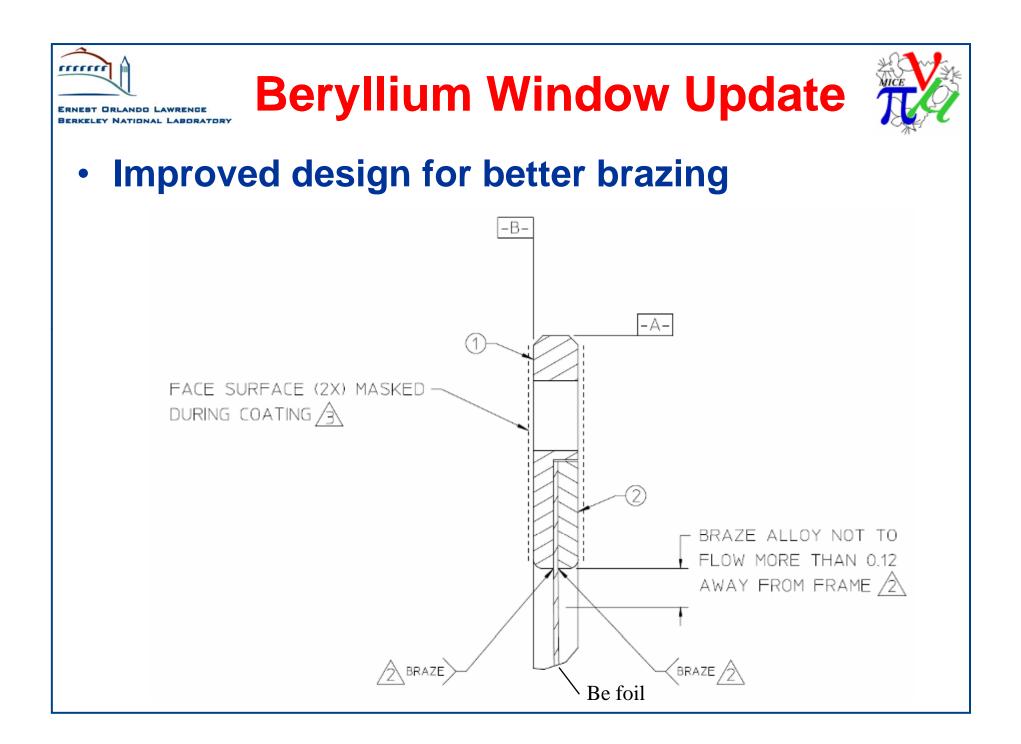
ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY


rrrrr

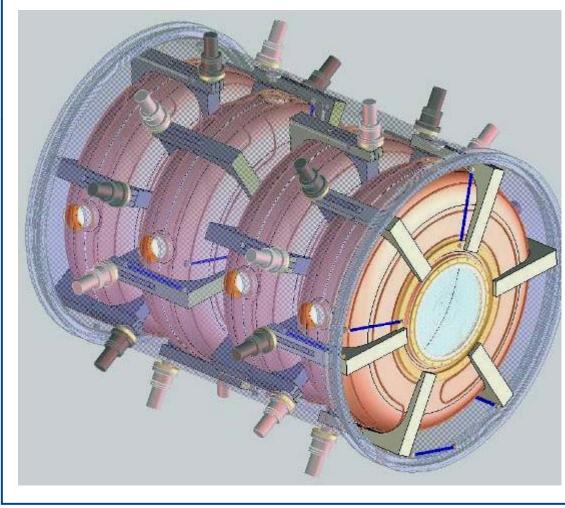

- The coupling can be adjusted by rotating the loop
- Water cooling line goes
 around the loop
- RF ceramic windows from Toshiba Company

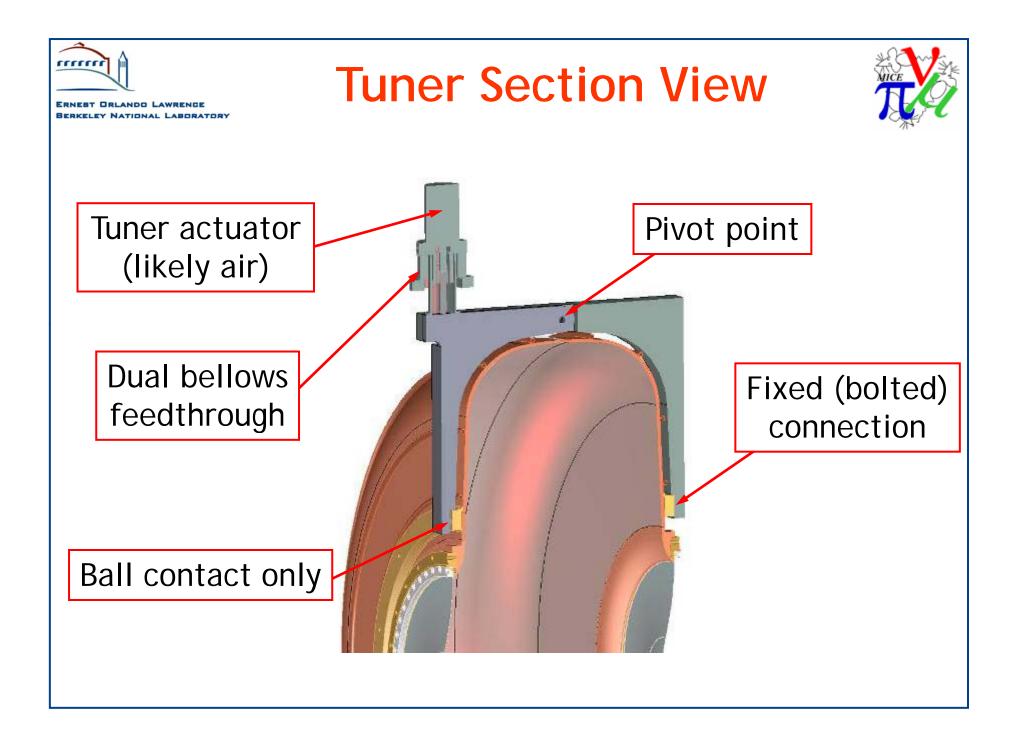


MUCOOL

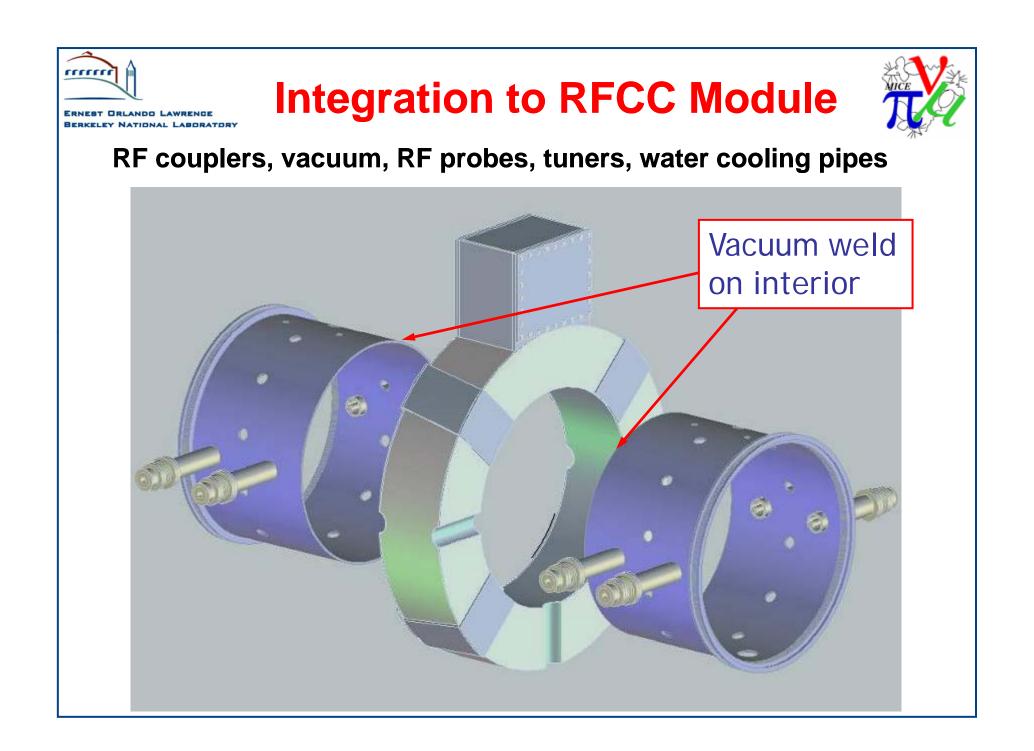

MICE

The windows were HP tested at MTA, Fermilab


Tuners for MICE Cavities


ERNEST ORLANDO LAWRENCE Berkeley National Laboratory

rrrrr


Four 201-MHz cavities in each RFCC module; one tuner assembly on each cavity.

- Clocking of tuner position between adjacent cavities avoids interference
- Actuators offset from cavity center plane due to width of coupling coil
- Soft connection only (bellows) between tuner/actuators and vacuum vessel shell

- Schedule has been developed (~ by early 2010)

		WB <mark>S-1.3.2-10-08-07(w_MC)</mark> Insert Format Tools Project Collaborate Window Help Adobe PDF					Type a	question for help	- 6
							111-1-		List we
		💁 🌮 👗 🖻 🖺 🟈 🤊 😓 📨 💑 🏥 🖹 🜄 🚳 🖓 No Group	- 🔍 🔍 🦻 I	a 🛛 🚽 🚬		Show - Arial		• 8 • B	1 1
Task	ks 🔻 Resou	rces 🔹 Track 👻 Report 👻 🚐							
1 0 :	-								
		146,147,148,40,32			,				
	WBS	Task Name	Duration	Start	Finish	Work	Original Fixed Cost	Predecessor	
							[\$]		Oct
1	1		797.5 days	Mon 10/2/06	Wed 10/21/09	7,809.87 hrs	\$3,647,068		-
2	1.1	MICE Integration	1 day		Mon 10/2/06	0 hrs	\$0		
3	1.2	Muon Beam Line & Infrastructure	1 day	Mon 10/2/06	Mon 10/2/06	0 hrs	\$0		
4	1.3	MICE Cooling Modules	797.5 days	Mon 10/2/06	Wed 10/21/09	7,809.87 hrs	\$3,647,068		-
5	1.3.1	Absorber and Focus Coil Module	1 day	Mon 10/2/06	Mon 10/2/06	0 hrs	\$0		
	1.3.2	Cavity and Coupling Coil Module	797.5 days	Mon 10/2/06	Wed 10/21/09	7,809.87 hrs	\$3,647,068		-
7	1.3.2.1	□ RF Cavities		Mon 10/1/07	Fri 4/3/09	3,809.87 hrs	\$2,112,368		
8	1.3.2.1.1	Engineering Design & Inspection	395 davs	Mon 10/1/07	Fri 4/3/09	2.617.87 hrs	\$319,448		
_	1.3.2.1.1.1	RF Cavity Analysis and Design	· · · ·	Mon 10/1/07	Fri 2/29/08	592 hrs	\$67.680		
10	1.3.2.1.1.1.1	Complete Final Cavity Conceptual Design	8 wks		Fri 11/23/07	128 hrs	\$21,120		
_	1.3.2.1.1.1.2	Complete Final Cavity RF and Structural Analysis		Mon 11/26/07	Fri 12/21/07	64 hrs	\$10,560		
_	1.3.2.1.1.1.3	Generate Detailed 3D Model of Cavity Body		Mon 12/24/07	Fri 1/18/08	160 hrs	\$14,400		
	1.3.2.1.1.1.4	Complete Detail and Assembly Drawings for Cavity Fab		Mon 1/21/08	Fri 2/29/08	240 hrs	\$21,600		
_	1.3.2.1.1.2	Tuner Mechanism Analysis and Design		Mon 2/18/08	Fri 4/18/08	224 hrs	\$24.960		
	1.3.2.1.1.2.1	Complete Final Cavity Shell Stiffness Analysis		Mon 2/18/08	Fri 2/22/08	16 hrs	\$2,640		
	1.3.2.1.1.2.2	Complete Final Tuner Conceptual Design & Analysis		Mon 2/25/08	Fri 3/14/08	48 hrs	\$7,920		
	1.3.2.1.1.2.3	Complete Detailed Drawings for Tuner Fab		Mon 3/24/08	Fri 4/11/08	120 hrs	\$10,800	2	
_	1.3.2.1.1.2.4	Specify Procurement of Tuner Components		Mon 4/14/08	Fri 4/18/08	40 hrs	\$3,600		
<u> </u>	1.3.2.1.1.3	□ Cavity Window Anslysis and Design		Mon 12/24/07	Fri 1/18/08	64 hrs	\$10,560		
_	1.3.2.1.1.3.1	Complete Window Geometry Conceptual Design		Mon 12/24/07	Fri 1/4/08	32 hrs	\$5,280		
_	1.3.2.1.1.3.2	Specify Procurement of RF Windows	2 wks		Fri 1/18/08	32 hrs	\$5,280		
_	1.3.2.1.1.4	RF Couplers Analysis and Design		Mon 1/21/08	Fri 3/21/08	184 hrs	\$21,360		
_	1.3.2.1.1.4.1	Complete Final RF Coupler Conceptual Design		Mon 1/21/08	Fri 2/1/08	32 hrs	\$5,280		
_	1.3.2.1.1.4.2	Complete RF Coupler Design Details	2 wks		Fri 2/15/08	32 hrs	\$5,280		
_	1.3.2.1.1.4.3	Complete Net Staple Design Design Design	3 wks		Fri 3/21/08	120 hrs	\$10,800	1	
_	1.3.2.1.1.5	□ Module Vacuum System Analysis and Design		Mon 3/17/08	Fri 5/2/08	144 hrs	\$17,760		
_	1.3.2.1.1.5.1	Develop Final Vacuum System Layout		Mon 3/17/08	Fri 3/28/08	32 hrs	\$5,280		
	1.3.2.1.1.5.2	Perform Final Vacuum System Analysis		Mon 3/31/08	Fri 4/4/08	16 hrs	\$2,640		
_	1.3.2.1.1.5.3	Specify Vacuum Components	1 wk		Fri 4/11/08	16 hrs	\$2,640		
_	1.3.2.1.1.5.4	Complete Detailed Drawings for Vacuum System Components		Mon 4/21/08	Fri 5/2/08	80 hrs	\$7,200	1	
_	1.3.2.1.1.6	□ Module Vacuum Shell Analysis and Design	35 days		Fri 5/30/08	256 hrs	\$30,240		
	1.3.2.1.1.6.1	Develop Final Vacuum Shell & Support Conceptual Design	-	Mon 4/14/08	Fri 4/25/08	32 hrs	\$5,280		
	1.3.2.1.1.6.2	Perform Vacuum Shell and Support Stress Analysis		Mon 4/28/08	Fri 5/23/08	64 hrs	\$10,560		
_	1.3.2.1.1.6.3	Complete Detailed Drawings for Vacuum Shell & Support		Mon 5/5/08	Fri 5/30/08	160 hrs	\$14,400	3	
	1.3.2.1.1.7	Fabrication, Assembly and Testing Follow On and Coordination		Mon 11/26/07	Fri 4/3/09	1,153.87 hrs	\$146,888		
								•	•
dy							EXT C	APS NUM S	CRL
		🕫 💽 🗟 🔿 👋 🏅 🐻 Microsoft Power 🌀 Inbox for DLi@lb 🔯	Microsoft Project					09201	