

The RF background issue: a new model + heat

RIKARD SANDSTRÖM, GENEVA UNIVERSITY MICE COLLABORATION MEETING RAL, FEB 12, 2008

A CENTURY OLD MYSTERY

Why the strong dependence on gradient? Due to number of photons per electron Due to increased field emission

ADDITIONAL EFFECTS

B field Avalanche RF induced heat, MICE & NuFact

MTA data, two on-axis detectors

Raw data scaled to events per RF period (5ns).

- $\bullet PMT\#8$ data taken over full 125 $\mu s.$
- •PMT#16 data taken over 88.6µs flattop only.

PMT#16 is smaller, but closer, than PMT#8.

Virtually all photons hitting PMT#16 deposit all their energy in the detector, while only a fraction interact with the paddle, and not all energy is confined in active volume.

PMT#16 is saturated at ~10MV/m.

Why the strong dependence on gradient?

3

• PMT 16 between $5.95 \le E \le 9.32$ [MV/m]: • Rate $n_{\gamma} \propto E^{16.5}$ (χ^2 /ndf = 0.3752/2) • Why???

• My hypothesis:

- Electrons are emitted from cavity surfaces due to field emission.
- All electrons are stopped on the opposite side of the cavity.

× Copper (and aluminum).

• All events in the detector are bremsstrahlung photons created when electrons stop.

Electron energy

Assuming electrons only emitted when field is maximal:

Minimum field required to reach opposite cavity wall.

 \Rightarrow Sharp cut off around 3 MV/m.

Initially very steep gradient, later linear.

E [MV/m]

Radiation yield

= fraction of kinetic energy lost through radiative processes.

Heavy elements (X_o) give higher radiation yield.

Range of 1 MeV e- in Al = 2 mm.

MICE: 0.18 mm Al window.

Hence, combination of photon production in Al and LiH2 (+ Be, Cu).

MTA: Electron ranges out in copper.

Attenuation of photons

• At 1 MeV, Compton scattering dominates.

• At lower energies, PE dominates -> Much larger cross section!

•Hence above 1 MeV only moderate attenuation (transmission≈0.4), no photons at keV scale.

MICE: less material than MTA→less attenuation.

Attenuated bremsstrahlung spectrum

Assume radiation yield p_v.

Then the average photon energy is

3²/Z² dσ/dt

 $\langle t \rangle = p_y \cdot T$

and since

$$\langle t \rangle = \int t \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$$

the differential cross section can be normalized despite infrared divergence

$$p_{gen}(x) = \frac{4}{3}T^2 p_y \left(\frac{1}{x} - 1 + \frac{3}{4}x\right)$$

which together with attenuation gives the spectrum on the right. (x=t/T)

Good agreement, but calculations give too many high energy photons. •No energy loss accounted for.

•Additional path length at large angles.

•The parameterization does not work well at high x.

These effects explain a lot!

9

In the same region (5.95 \leq E \leq 9.32 [MV/m]) the rate from these effects account for

That leaves

$$n_e \propto E^{16.5-7.65} = E^{8.9}$$

 $n_{\gamma}/n_e \propto E^{7.65}$ (χ^2 /ndf = 4.445/1077)

to be explained.

R. Sandström – MICE CM 20

At higher gradients

Experiments (LEP, MuCool) consistently report E^{9.6}.

This is at higher gradient, so higher electron energy (almost linear with gradient)...

...and thus almost all photons are over detector threshold.

 $E^{8.9}$ remains after rad yield (0.7) is deducted.

J. Norem et al. / Nuclear Instruments and Methods in Physics Research A 472 (2001) 600-605

Enhancement factor β

If local surface field is above 7 GV/m, tensile strength of copper is exceeded. Breakdown!

Asperities and contamination can create local field enhancement,

 $E_{local} = \beta E$

thus causing field emission and breakdown also at low accelerating gradients.

R. Sandström – MICE CM 20

- The remaining rate $\propto E^{2.7}$ is believed to be due to creation of new emitting sites, β .
 - The asperities created in a breakdown become new sources of field emission, (and thus give an extra factor of two due to FN tunneling). Thus the mechanism should approximately be proportional to E^{1.35}.
 - The mathematics involved are poorly understood.

Breakdown rate

If the creation of new asperities is proportional to the rate of breakdown:

"The slope of the fitted curve is one decade in breakdown rate for 7 MV/m of average gradient..."

 $1/\log_{10}(7) = 1.18$

Steffen Döbert, SLAC-PUB-10690

The model compared with data

15

Using the previous model for bremsstrahlung, attenuation etc, but adding a factor $E^{2(1.18+3.09)}$ due to field emission gives very good agreement with observed data in the region of confidence!

(also added constant factor 2500 for overall scale)

Comparison of theory with data

Material dependency

It is well known that maximum gradient increases with tensile strength.

Fewer breakdown events would create fewer asperities too...

However the *shape* of the asperity influences β , so materials that create soft edge asperities are desired.

Tests using « buttons » are ongoing at MTA, Fermilab.

R. Sandst

Molybdenum buttons

At 8 MV/m (MICE)

- MICE is using 2 sets of four 201.25 MHz cavities, operating at 8 MV/m.
- Simulation with E=1.226 MeV (corresponding to 8 MV/m):

 $\left. \frac{n_{\gamma}}{n_e} (PMT16) \right|_{8 \text{ MV/m}} \approx 5.72 \cdot 10^{-8}$

• Extrapolation between points of MTA data gave:

• $n_{\gamma} = 4.03 \cdot 10^{-5}$ at 8 MV/m.

• This implies $n_e = 705$ per RF (half-) period.

• Equivalent to 142 GHz per cavity and direction.

Electron energy in MICE linac

The electron energy depends on phasing of individual cavities.

18

A linac of four cavities	
gives 8 distinct	
electron energies and	
timings. (Timings	
overlap with	
subsequent RF	
period.)	

The bremsstrahlung photon spectrum is a combination of these monochromatic electron energies.

Initial field sign	Cavities	Reversed	$E_{kin}[MeV]$	TOF[ns]
-1	1	no	1.123351	1.6422
-1	2	no	2.628161	3.1050
-1	3	no	4.650005	4.5484
-1	4	no	7.102850	5.9862
+1	1	no	1.123351	1.6422
+1	2	no	2.064848	3.1656
+1	3	yes	7.068071	10.1204
+1	4	yes	4.645628	8.6752

Phases set to accelerate a 200 MeV/c muon. Average electron energy = 3.8 MeV.

Other possible effects

• B > 0 increases background.

- With a factor e^{0.9251B} according to D. Huang, based on 805 MHz cavity data.
- This would give an extra order of magnitude @ 3 T *if* applicable to 201 MHz cavity. It will be measured.

• Avalanche effect.

- Similar to multipactoring, when an electron hit the Be window of a neighboring cavity, the field is nearly maximal so low energy secondaries are accelerated.
- Not known if this will give significant contribution.

- Due to reversing electrons, upstream absorber sees 2 peaks, downstream absorber 6, and center absorber 8.
 - Thus, center absorber always has maximum load, no matter if electrons are reversing.
 - Electron energy almost fully contained within AFC module.
- For cavities phased by reference 200 MeV/c muon, average electron energy is 3.80 MeV, and duty factor is 10⁻³.

$$\langle P_{heat} \rangle = \frac{f_e}{2} \langle E_{kin} \rangle d \approx 4.317 \cdot 10^{15} \text{ eV/s} \approx 0.691 \text{ mW}$$

If B field applied, could be one order of magnitude higher.
This is well within MICE specifications (TRD: 15 W) and not a problem to the experiment.

R. Sandström – MICE CM 20

Heating of absorbers, NuFact

(Assuming MICE absorbers:)

- At NuFact E = 16 MV/m.
 - Increased electron emission: factor 2^{2(3.09+1.18)}=372
 - Increased energy of electron after one cavity: factor 2.6

× Average energy of a linac should give similar factor.

• Duty factor 0.19%: factor 1.9

• Hence, P = 1.3 W.

• Still OK.

- × When B field is applied?
- E > 21 MV/m critical, even without B field.

Uncertainties

• The largest uncertainty is the *measured* rate:

- Very sensitive to field gradient.
- More precise measurements could alter this number.
- Uncertainty of analysis components negligible.

• Simulation:

• Largest uncertainty from simulation is location of emitting sites in cavity.

• The model for activating pre-existing asperities and creation of new asperities is very new and should be considered *preliminary*.

• Where can I find more data?

- I have shown how the bremsstrahlung photon production can be both calculated and simulated, giving the same result.
- I have developed a model which successfully reproduces the observed gradient dependency of the photon rates.
 - It solves the apparent contradiction of different experiments.
 - As far as I can tell, this is the first model of its kind.
 - A qualitative theory for RF breakdown and formation of asperities is still missing.
- Using the model I have given the expected background rates for MICE.
 - Absorber heating is no problem to MICE, but could be to NuFact.

Extra slides

(24)

R. Sandström – MICE CM 20

2008-02-12

Simulation, angles

I assumed isotropic angular distribution of photons.

25

In order to cross check, MTA was simulated in G4MICE using 3.6 million initial electrons.

 \Rightarrow A photon has 9.4*10⁻⁶ chance to hit the detector.

Solid black line is angular spectrum (after attenuation in metal) if isotropic angular distribution.

