

UTfit New Physics from Flavour

Vincenzo Vagnoni **INFN Bologna**

on behalf of the UT_{fit} Collaboration http://www.utfit.org

M. Bona, M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, M. Pierini, C. Schiavi, L. Silvestrini, V. Sordini, A. Stocchi, V. V.

Cabibbo-Kobayashi-Maskawa (face to face)

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Where New Physics enters the game

The SM works beautifully up to a few hundred GeV. Several arguments suggest that it might be an effective theory up to some scale Λ

$$\mathcal{L}(M_W) = \Lambda^2 H^{\dagger} H + \lambda (H^{\dagger} H)_{SM}^2 + \mathcal{L}_{SM}^{gauge} + \mathcal{L}^{Yukawa} + \mathcal{L}^5 / \Lambda + \mathcal{L}^6 / \Lambda^2$$

NP contribution to EW precision, FCNC processes, CPV, g-2, b \rightarrow s γ , etc..

The new contributions, in general, introduce new sources of CP violation and flavour mixing. The consistency of the Standard Model becomes a puzzle in this framework.

We should see some discrepancy

Constraints in the $\bar{\rho}$ - $\bar{\eta}$ plane

UT-lattice ("classic" analysis - pre B factories)

UT-angles (post B factories)

Experimental situation

flavour violation in b ↔ d transitions

5

Sin2 β - $|V_{ub}|$ tension

 $\sin 2\beta_{b\to c\bar{c}s} = 0.681 \pm 0.025$

 $\sin 2\beta_{fit} = 0.744 \pm 0.039$

 $\sin 2\beta_{\text{all}} = 0.690 \pm 0.023$

Possibile explanations:

- * NP in B_d mixing
- * problem with theory in b→u semileptonic decays
- * both

Parameterization of NP contributions to the mixing amplitudes

K mixing amplitude (2 real parameters):

$$Re A_K = C_{\Delta m_K} Re A_K^{SM} Im A_K = C_{\varepsilon} Im A_K^{SM}$$

$$B_{d} \text{ and } B_{s} \text{ mixing amplitudes (2+2 real parameters):}$$

$$A_{q} e^{2i\phi_{q}} = C_{B_{q}} e^{2i\phi_{B_{q}}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$$

Including NP in UT analysis

	ρ, η	C_{Bd} , ϕ_{Bd}	$C_{\scriptscriptstyle{EK}}$	C_{Bs} , ϕ_{Bs}
V_{ub}/V_{cb}	Х			
γ (DK)	Х			
ϵ_{K}	Х		Х	
sin2β	Х	Х		
Δm_d	Х	Х		6
α (ρρ,ρπ,ππ)	Х	Х		
A _{SL} B _d	Х	хх		
$\Delta\Gamma_{\rm d}/\Gamma_{\rm d}$	Х	хх		
$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	Х			ХХ
Δm_s				X
A _{CH}	X	хх		хх

model independent assumptions

B factories are constraining the UT with tree-level processes ⊯

Assuming no NP at tree level (the effect of the \overline{D}^{ϱ} - D^{ϱ} mixing to γ are small wrt the present error and can be accounted for in the future)

We can determine $\overline{\rho}$ and $\overline{\eta}$ regardless of NP

$$\overline{\rho} = \pm 0.18 \pm 0.11$$

$$\bar{\eta} = \pm 0.41 \pm 0.05$$

Values in agreement with SM within the errors

Tree level UT fit

NP in K⁰ and B⁰ mixing

* the sin2 β tension produces the 1.5 σ effect of Φ_{B_d} and the asymmetry in $(A^{NP}/A^{SM}, \Phi_d^{NP})$

Tevatron breakthrough in the B_s sector

TEVATRON experiments have started test the b⇔s sector with B_s mixing

- Measurement of ∆ms
- Measurement of dilepton charge asymmetry
- Semileptonic asymmetry
- Measurement of $\Delta\Gamma_s/\Gamma_s$
- B_s lifetime measurement in flavour specific final states Indirect

constraints on the mixing phase

2D bound on β_s vs ΔΓ from tagged angular analysis of B_s→J/ψφ decays discrepancy

with Standard Model observed

Combining CDF and D0 measurements

2D likelihood ratio for $\Delta\Gamma$ and Φ_s 2-fold ambiguity present, no

assumption on the strong phases

7-parameter fit + correlation matrix or 1D likelihood profiles of $\Delta\Gamma$ and Φ_s 2-fold ambiguity removed using strong phases from B -> J/Ψ K* + SU(3) +?

0

 $2\beta_{s}$ (rad)

- D0: arXiv:0802.2255 [hep-ex]
 - $\odot \tau_s = 1.52 \pm 0.06$ (stat) ± 0.01 (syst) ps

 - $ΦΓ_s = 0.19 ± 0.07 (stat) <math>^{+0.02}_{-0.01}$ (syst) ps-1 $Φ_s = -2β_s = -0.57 <math>^{+0.24}_{-0.30}$ (stat) $^{+0.07}_{-0.30}$ (syst)
- © CDF: arXiv:0712.2397 [hep-ex] Feldman-Cousins likelihood ratio with systematics included

Modeling D0 data

Unlike for CDF, it was not possible to obtain the 2D likelihood from D0. We use three different approaches:

Default result: take the quoted result + 2x2 correlation matrix

To include non-Gaussian tails:

- 1) scale errors such that they agree with the quoted " 2σ " ranges: [-0.06, 1.20] \rightarrow 0.38
- 2) use the 1D profile likelihood given by D0.

Modeling D0 data (II)

 In the 3 modelizations we have considered, the probability density is significantly affected just in the region far from the Standard Model solution

A comment: more than two measurements...

D0 tagged measurement

Our analysis (using A_{SL} , A_{CH} , τ_{Bs} , $\Delta\Gamma/\Gamma$)

- ullet In our analysis, we enforce the dependence of $\Delta\Gamma$ from SM and NP parameters
- There is more physics information in our fit than in a simple combination of the two experimental results

Conclusions

- The UT apex is nowadays very well known in the Standard Model, but only known at O(10%) in the presence of New Physics in the mixing
- Nevertheless, the inclusion of the Tevatron measurements has led to an evidence of discrepancy with respect to the Standard Model prediction of the B_s mixing phase
- If this evidence will be confirmed by further data...
 - MFV class of models will be ruled out
 - The following pattern of flavour violation in NP would emerge
 - 1 \leftarrow 2: strong suppression
 - 1 ←→ 3: ≤ O(10%)
 - 2 ←→ 3: O(1)
- Looking forward to new Tevatron results and eventually LHCb to say a final word on this
- A Super B factory would then be very important to enter the 1% era of CKM fits at some point