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Motivation for precision studies of the b → sγ transition.

A sample SM diagram:

γ

W W

b u,c,t s

The u, c, t quarks are not degenerate at all:

(mt > MW , mu, mc � MW)

⇒ No GIM suppression by mass ratios

BR ' 3.2 × 10−4 ' 0.14 αem
π .

⇒ Large statistics, because ∼ 109 bb̄ pairs
have already been produced at the B-factories

A sample MSSM diagram:

γ

w~ w~

b u,c, t~ ~ ~ s

Roughly: ∆SUSYBR ∼




100GeV
msquark






2
BRSM

Likely: msquark ∼ (a few hundred GeV)

⇒ A few % effects in the BR are likely.
⇒ Precise SM calculations are necessary.

At present, the uncertainty in BR[B̄ → Xsγ] amounts to around ±7%,

both on the experimental and the theoretical sides (for Eγ > 1.6 GeV).



Resummation of
(

αs ln M 2
W/m2

b

)n
is most conveniently performed in the framework of an effective

theory that arises from the SM after decoupling of the heavy electroweak bosons and the top quark.

The Lagrangian of such a theory reads:

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2
V ∗

tsVtb Σ
8

i=1
Ci(µ) Qi +








higher-dimensional,
on-shell vanishing,

evanescent







.

Q1,2 = b s
c c

= (s̄Γic)(c̄Γ
′
ib), from b W s

c c

, |Ci(mb)| ∼ 1

Q3,4,5,6 = b s
q q

= (s̄Γib)Σq(q̄Γ′
iq), |Ci(mb)| < 0.07

Q7 = b s

γ

=
emb
16π2 s̄LσµνbRFµν, C7(mb) ' −0.3

Q8 = b s

g

=
gmb
16π2 s̄LσµνT abRGa

µν, C8(mb) ' −0.15

Three steps of the calculation:

Matching: Evaluating Ci(µ0) at µ0 ∼ MW by requiring equality

of the SM and the effective theory Green functions.

Mixing: Deriving the effective theory Renormalization Group Equations (Cbare
j = CiZij)

and evolving Ci(µ) from µ0 to µb ∼ mb.

Matrix elements: Evaluating the on-shell amplitudes at µb ∼ mb.



Resummation of large logarithms


αs ln M2
W

m2
b





n
in the b → sγ amplitude.

RGE for the Wilson coefficients: µ
d

dµ
Cj(µ) = Ci(µ)γij(µ)

The anomalous dimension matrix γij is found from the effective theory renormalization constants, e.g.:

Z22 Z27 Z87

LO

[Gaillard, Lee, 1974] [Grinstein et al., 1990] [Shifman et al., 1978]
[Altarelli, Maiani, 1974] [Grigjanis et al., 1988]

NLO

[Altarelli et al., 1981] [Chetyrkin, MM, Münz, 1997] [MM, Münz, 1995]
[Buras, Weisz, 1990]

NNLO

[Gorbahn, Haisch, 2004] [Czakon, Haisch, MM, 2006] [Gorbahn, Haisch, MM, 2005]

∼ 2 × 104
diagrams,

−4% effect in the BR

All the Wilson coefficients
C1(µb), . . . , C8(µb)
are now known at the NNLO
in the SM.



Numerical effect of the 4-loop mixing at the NNLO
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RB
NNLO ≡ BNNLO − B 4L→0

NNLO

BLO

=







αs(µb)

π







2

∆NNLO

∆NNLO =
C

(2)eff
7 (µb) −

[

C
(2)eff
7 (µb)

]
4L→0

8 C
(0)eff
7 (µb)

=
h

(2)
1 ηa1+2 + h

(2)
2 ηa2+2 +

∑8
i=3 h

(2)
i ηai

ηa2C
(0)
7 (µ0) + 8

3 (ηa1 − ηa2) C
(0)
8 (µ0) +

∑8
i=1 h

(0)
i ηai

,

η = αs(µ0)/αs(µb)



The weak radiative B-decay branching ratio:

B(B̄ → Xsγ)Eγ>E0
= B(B̄ → Xceν̄)exp
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π C [P (E0) + N (E0)]

pert. non-pert

O
(

Λ2

m2
c
, αs

Λ
mb

)

∼ 3%!,∼ 5%?
Γ[b→Xsγ]Eγ>E0

|Vcb/Vub|2 Γ[b→Xueν̄]
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π P (E0),

The semileptonic phase-space factor:

C =
∣
∣
∣
∣
∣
∣

Vub
Vcb

∣
∣
∣
∣
∣
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2 Γ[B̄→Xceν̄]
Γ[B̄→Xueν̄]

C =







0.582 ± 0.016, C. W. Bauer et el., hep-ph/0408002, 1S scheme,

0.546+0.023
−0.033, P. Gambino and P. Giordano, arXiv:0805.0271, kinetic scheme.

mc(mc) =







1.224 ± 0.057, 1S scheme,

1.267 ± 0.056, kinetic scheme.

∂
∂mc

P (E0) < 0 ⇒ The differences tend to cancel in the radiative branching ratio.



The final result of the SM calculation:

B(B̄ → Xsγ)NNLO
Eγ>1.6 GeV =







(3.15 ± 0.23) × 10−4, hep-ph/0609232, using the 1S scheme,

(3.26 ± 0.24) × 10−4,
following the kin scheme analysis of

arXiv:0805.0271, but mc(mc)
3loop

rather than mc(mc)
1loop in P (E0).

Contributions to the total uncertainty:

5% non-perturbative O
(

αs
Λ
mb

)

⇒ Dedicated analysis necessary

See S.J. Lee, M. Neubert, G. Paz,
hep-ph/0609224 → −1.5%.

3% parametric (αs(MZ), Bexp
semileptonic, mc & C, . . . )

2.0% 1.6% 1.1% (1S)
2.5% (kin)

3% mc-interpolation ambiguity ⇒ Complete three-loop on-shell matrix

element calculation even for mc = 0
should help a lot. Work in progress by

R. Boughezal, M. Czakon, T. Schutzmeier.

3% higher order O(α3
s) ⇒ This uncertainty will stay with us.



Currently known contributions to B(B̄ → Xsγ) that have not been

included in the estimate (3.15 ± 0.23) × 10−4 in hep-ph/0609232:
(±7.3%)

• New/old large-β0 bremsstrahlung effects

[Ligeti, Luke, Manohar, Wise, 1999] ⇒ +2.0% in the BR

[Ferroglia, Haisch, 2007, to be published]

• Four-loop mixing into the b → sg operator Q8
[Czakon, Haisch, MM, hep-ph/0612329] ⇒ −0.3% in the BR

• Effects of mc and mb in loops on gluon lines

[Asatrian, Ewerth, Gabrielyan, Greub, hep-ph/0611123]

[Boughezal, Czakon, Schutzmeier, arXiv:0707.3090] ⇒ +1.6% in the BR
[Pak, Czarnecki, arXiv:0803.0960]

[Ewerth, arXiv:0805.3911]

• Non-perturbative O
(

αs
Λ
mb

)

effects in the term ∼ C7C8

[Lee, Neubert, Paz, hep-ph/0609224] ⇒ −1.5% in the BR

Total: +1.8% in the BR



Comments on the Multi-Scale OPE (MSOPE) calculation

by T. Becher and M. Neubert, PRL 98 (2007) 022003 [hep-ph/0610067].

B(Eγ > 1GeV ) B(Eγ > 1.6GeV )
hep-ph/0609232 3.27 × 10−4 3.15 × 10−4

(“fixed order”)

hep-ph/0610067 3.27 × 10−4 3.05 × 10−4

(“MSOPE”) (adopted from above)
before adding the −1.5% of O(αsΛ/mb).

There is almost a factor-of-two difference in:

B̄ → Xsγ
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For simplicity, let us set Ci(µb) → 0 for i 6= 7. Then, in the “fixed order”:

B(Eγ > E0)/Btotal = 1 + αs(µb)
π φ(1)(E0) +






αs(µb)
π






2
φ(2)(E0) + . . .

φ(1)(E0) = φ
(1)
a (E0) + φ

(1)
b (E0)
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b = 10

3 δ+1
3δ

2−2
9δ

3+1
3δ(δ−4) ln δ = 31

9 − 7
3x − 1

2x
2 − 1

9x
3− 5

36x
4 + O(x5)

x = 2E0/mb

δ = 1 − x

E0 [GeV]

φ(1)

φ(1)
a = − 31

9
− 2

3
ln2 δ − 7

3
ln δ = −31

9
+ 7

3
x + 1

2
x2 + 1

9
x3− 1

36
x4 + O(x5)

Terms up to O(x3) must cancel out in φ(1)
a + φ

(1)
b . In the current MSOPE results, the higher-order

corrections to φ(1)
a are resummed, but φ

(1)
b is retained in the “fixed order”.

⇒ These results are unreliable for 1 GeV < E0 < 1.6 GeV.



The SM result:

B(B̄ → Xsγ)NNLO
Eγ>1.6 GeV =







(3.15 ± 0.23) × 10−4, hep-ph/0609232, using the 1S scheme,

(3.26 ± 0.24) × 10−4,
following the kin scheme analysis of

arXiv:0805.0271, but mc(mc)
3loop

rather than mc(mc)
1loop in P (E0).

agrees within ∼ 1σ with the current experimental average
(Belle, Babar, Cleo −→ HFAG)

B(B̄ → Xsγ)Eγ>1.6 GeV = (3.52 ± 0.23 ± 0.09) × 10−4.
stat & syst theory
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Missing ingredients in the perturbative NNLO matrix elements

Γ(b → Xparton
s γ)

Eγ>E0

=
G2

Fm5
bαem

32π4 |V ∗
tsVtb|2

8∑

i,j=1
Ci(µb)Cj(µb)Gij(E0, µb)

|C1,2(µb)| ∼ 1, |C3,4,5,6(µb)| < 0.07,

C7(µb) ∼ −0.3, C8(µb) ∼ −0.15.LO: Gij = δi7δj7 ⇔b s

γ

7
b s b

γ

7 7

NLO: The most important Gij (i, j = 1, 2, 7, 8) are known since 1996.
{

[Greub, Hurth, Wyler, 1996]
[Ali, Greub, 1991-1995]

The remaining Gij are known since 2002.
{

[Buras, Czarnecki, MM, Urban, 2002]
[Pott, 1995]

NNLO: Only i, j = 1, 2, 7, 8 have been considered so far.

Only G77 is
fully known: + + . . .







[Blokland et al., 2005]
[Melnikov, Mitov, 2005]
[Asatrian et al., 2006-2007]

7 7

7 7

G27: + + . . .
2 7 2 7

G22: + + . . .
2 2 2 2

c c

c c c c



Missing ingredients in the perturbative NNLO matrix elements

Γ(b → Xparton
s γ)

Eγ>E0

=
G2

Fm5
bαem

32π4 |V ∗
tsVtb|2

8∑

i,j=1
Ci(µb)Cj(µb)Gij(E0, µb)

|C1,2(µb)| ∼ 1, |C3,4,5,6(µb)| < 0.07,

C7(µb) ∼ −0.3, C8(µb) ∼ −0.15.LO: Gij = δi7δj7 ⇔b s

γ

7
b s b

γ

7 7

NLO: The most important Gij (i, j = 1, 2, 7, 8) are known since 1996.
{

[Greub, Hurth, Wyler, 1996]
[Ali, Greub, 1991-1995]

The remaining Gij are known since 2002.
{

[Buras, Czarnecki, MM, Urban, 2002]
[Pott, 1995]

NNLO: Only i, j = 1, 2, 7, 8 have been considered so far.

Only G77 is
fully known: + + . . .







[Blokland et al., 2005]
[Melnikov, Mitov, 2005]
[Asatrian et al., 2006-2007]

7 7

7 7

Large-mc asymptotics Large-β0 approximation

of Gij (mc � mb/2): for Gij (arbitrary mc):

1 2 7 8

+ + + + 1
+ + + 2

+ − 7

− 8

1 2 7 8

+ + + − 1
+ + − 2

+ + 7

+ 8

[MM, Steinhauser, 2006]
[Bieri, Greub, Steinhauser, 2003]
[Ligeti, Luke, Manohar, Wise, 1999]
[Ferroglia, Haisch, 2007]

The β0 corr. to G78, G88 are small.

G18 and G28 are small at the NLO.



Interpolation in mc

B(B̄ → Xsγ)
Eγ>E0

= X [ P (E0) + N (E0) ]
normalization perturbative non-perturbative

Expansion of P (E0):

P = P (0) + αs(µb)
4π




P

(1)
1 + P

(1)
2 (r)




 +






αs(µb)
4π






2 


P

(2)
1 + P

(2)
2 (r) + P

(2)
3 (r)






︸ ︷︷ ︸ ︸ ︷︷ ︸

known known

P
(1)
1 , P

(2)
3 ∼ C

(0)
i C

(1)
j , P

(1)
2 , P

(2)
2 ∼ C

(0)
i C

(0)
j , P

(2)
1 ∼

(

C
(0)
i C

(2)
j , C

(1)
i C

(1)
j

)

Moreover: P
(2)
2 = A nf + B = −3

2
(11 − 2/3nf)A + 33

2
A + B = P

(2)β0
2 + P

(2)rem
2

P
(2)β0
2 known for all r

The complete P
(2)
2 has been calculated only for r � 1

2.

r = mc(mc)
m1S

b

c c
q



The NNLO corrections P
(2)
k as functions of r = mc(mc)/m

1S
b
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See hep-ph/0609241

Dotted: exact, Solid: small-r expansions, Dashed: leading large-r asymptotics.

Interpolation:

P
(2)rem
2 (r) = x1+x2 P

(1)
2 (r)+x3 r d

drP
(1)
2 (r)+x4 P

(2)β0
2 (r)+x5|ANLO(r)|2

The coefficients xk are determined from the asymptotic behaviour at large r
and from the requirement that either (a) P

(2)rem
2 (0) = 0,

or (b) P
(2)
1 + P

(2)rem
2 (0) + P

(2)
3 (0) = 0,

or (c) P
(2)rem
2 (0) =

[

P
(2)rem
2 (0)

]

77
.

The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio.

The difference between these two cases is used to estimate the interpolation ambiguity.



Renormalization scale dependence of B(B̄ → Xsγ)Eγ>1.6 GeV
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Summary

• The NNLO calculation of the Wilson coefficients at µ = µb is completed.
The 4-loop terms affect the branching ration by ∼ −4%.

• An intriguing discrepancy occurs between the 1S- and kinetic scheme
determinations of the normalization factor C.

• For E0 = 1.6 GeV or lower, the MSOPE-resummed logarithmic
perturbative corrections undergo a dramatic cancellation with the non-
logarithmic terms. Consequently, both types of terms must be treated
with the same precision. Until this is done, the fixed-order results
should be considered more reliable.

• The mc = 0 results for the NNLO contributions from 4-quark operators
are awaited. They should allow to improve the the interpolation in mc,
and place it on more solid grounds.



BACKUP SLIDES



The mc-dependence of P
(2)rem
2 = C

(0)
i (µb)C

(0)
j (µb)K

(2)rem
ij (µb, E0).

Example: K
(2)rem
77 (2.5 GeV, 1.6 GeV) as a function of mc/mb:

0.2 0.4 0.6 0.8 1

100

110

120

130

140

150

1%
in BR

large mc

asymptotics

↑ mc/mb
exp.
range

charm

Value at mc = 0: Blokland et al., hep-ph/0506055 (cc̄ production included).

Large-mc asymptotics: Steinhauser, MM, hep-ph/0609241.

Interpolation: “ “ “ (cc̄ production included).

interp.

exact

Exact b → Xsγ: Asatrian et al, hep-ph/0611123 (cc̄ production excluded).

Exact b → Xueν̄ : Pak, Czarnecki, arXiv:0803.0960 (cc̄ production included).



The same pattern
arises at O(α2

s):
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δ = 1 − x
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φ(2)

φ(2)
a

[const. + logs(δ)]

It must be the case also
at higher orders because:
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ln δ = −x − 1
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2 − 1
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3+O(x4)

However, only “const + logs(δ)” have been included at orders O(α3
s) and

higher in hep-ph/0610067.


