QCD calculations of radiative B decays

1. Introduction
2. Calculation of the Wilson coefficients $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right.$ complete).
3. The issue of normalization
4. Non-applicability of the existing MSOPE results at moderate E_{γ}
5. Missing ingredients at $\mathcal{O}\left(\alpha_{s}^{2}\right)$
6. Summary

Motivation for precision studies of the $b \rightarrow s \gamma$ transition. A sample SM diagram:

The u, c, t quarks are not degenerate at all:
$\left(m_{t}>M_{W}, \quad m_{u}, m_{c} \ll M_{W}\right)$
\Rightarrow No GIM suppression by mass ratios

$$
\mathrm{BR} \simeq 3.2 \times 10^{-4} \simeq 0.14 \frac{\alpha_{\mathrm{em}}}{\pi}
$$

\Rightarrow Large statistics, because $\sim 10^{9} \quad b \bar{b}$ pairs have already been produced at the B-factories

A sample MSSM diagram:

Roughly: $\Delta^{\text {SUSY }} \mathrm{BR} \sim\left(\frac{100 \mathrm{GeV}}{m_{\text {squark }}}\right)^{2} B R^{\mathrm{SM}}$
Likely: $m_{\text {squark }} \sim($ a few hundred GeV$)$
\Rightarrow A few $\%$ effects in the BR are likely.
\Rightarrow Precise SM calculations are necessary.
At present, the uncertainty in $B R\left[\bar{B} \rightarrow X_{s} \gamma\right]$ amounts to around $\pm 7 \%$, both on the experimental and the theoretical sides (for $E_{\gamma}>1.6 \mathrm{GeV}$).

Resummation of $\left(\alpha_{s} \ln M_{W}^{2} / m_{b}^{2}\right)^{n}$ is most conveniently performed in the framework of an effective theory that arises from the SM after decoupling of the heavy electroweak bosons and the top quark. The Lagrangian of such a theory reads:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i}+ \\
& Q_{1,2}=\stackrel{\mathrm{c}}{\mathrm{~b}} / \mathrm{c} / \mathrm{s}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \xrightarrow{\mathrm{c}} \underset{\mathrm{~b}}{\mathrm{c}}, \quad\left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& Q_{3,4,5,6}=\stackrel{\substack{\mathrm{q}}}{\mathrm{~b}} / \mathrm{s} \quad=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \\
& Q_{7}=\mathrm{b}\left\{_{\mathrm{s}}^{\gamma}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu},\right. \\
& Q_{8}=\mathrm{b}^{\delta^{\mathrm{g}}} \mathrm{~s}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& \text { higher-dimensional, } \\
& \text { on-shell vanishing, } \\
& \text { evanescent } \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Three steps of the calculation:
Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and the effective theory Green functions.
Mixing: Deriving the effective theory Renormalization Group Equations $\quad\left(C_{j}^{\mathrm{bare}}=C_{i} Z_{i j}\right)$ and evolving $C_{i}(\mu)$ from μ_{0} to $\mu_{b} \sim m_{b}$.
Matrix elements: Evaluating the on-shell amplitudes at $\mu_{b} \sim m_{b}$.

Resummation of large logarithms $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{m_{b}^{2}}\right)^{n}$ in the $b \rightarrow s \gamma$ amplitude. RGE for the Wilson coefficients: $\quad \mu \frac{d}{d \mu} C_{j}(\mu)=C_{i}(\mu) \gamma_{i j}(\mu)$
The anomalous dimension matrix $\gamma_{i j}$ is found from the effective theory renormalization constants, e.g.:

[Gaillard, Lee, 1974]
[Altarelli, Maiani, 1974]

[Grinstein et al., 1990]

[Shifman et al., 1978]
[Grigjanis et al., 1988]

All the Wilson coefficients $C_{1}\left(\mu_{b}\right), \ldots, C_{8}\left(\mu_{b}\right)$ are now known at the NNLO in the SM.

Numerical effect of the 4 -loop mixing at the NNLO

$$
\begin{gathered}
R_{\mathrm{NNLO}}^{\mathcal{B}} \equiv \frac{\mathcal{B}_{\mathrm{NNLO}}-\mathcal{B}_{\mathrm{NNLO}}^{4 \mathrm{~L} \rightarrow 0}}{\mathcal{B}_{\mathrm{LO}}}=\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{\pi}\right)^{2} \Delta_{\mathrm{NNLO}} \\
\Delta_{\mathrm{NNLO}}=\frac{C_{7}^{(2) \mathrm{eff}}\left(\mu_{b}\right)-\left[C_{7}^{(2) \mathrm{eff}}\left(\mu_{b}\right)\right]^{4 \mathrm{~L} \rightarrow 0}}{8 C_{7}^{(0) \mathrm{eff}}\left(\mu_{b}\right)}=\frac{h_{1}^{(2)} \eta^{a_{1}+2}+h_{2}^{(2)} \eta^{a_{2}+2}+\sum_{i=3}^{8} h_{i}^{(2)} \eta^{a_{i}}}{\eta^{a_{2}} C_{7}^{(0)}\left(\mu_{0}\right)+\frac{8}{3}\left(\eta^{a_{1}}-\eta^{a_{2}}\right) C_{8}^{(0)}\left(\mu_{0}\right)+\sum_{i=1}^{8} h_{i}^{(0)} \eta^{a_{i}}}, \\
\eta=\alpha_{s}\left(\mu_{0}\right) / \alpha_{s}\left(\mu_{b}\right)
\end{gathered}
$$

The weak radiative B-decay branching ratio:
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi C}\left[\underset{\text { pert. }}{P\left(E_{0}\right)}+\underset{\text { non-pert }}{\left.N\left(E_{0}\right)\right]}\right.$
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right)$,
$\mathcal{O}\left(\frac{\Lambda^{2}}{m_{e}^{2}}, \alpha_{s} \frac{\Lambda}{m_{b}}\right)$
$\sim 3 \%$! $\sim 5 \%$?

The semileptonic phase-space factor:
$C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]}$
$C=\left\{\begin{array}{lll}0.582 \pm 0.016, & \text { c. w. Bauer } \text { et el., hep-ph/0408002, } & \text { 1S scheme, } \\ 0.546_{-0.033}^{+0.023}, & \text { P. Gambino and P. Giordano, arXiv:0805.0271, } & \text { kinetic scheme. }\end{array}\right.$
$\bar{m}_{c}\left(\bar{m}_{c}\right)= \begin{cases}1.224 \pm 0.057, & \text { 1S scheme }, \\ 1.267 \pm 0.056, & \text { kinetic scheme } .\end{cases}$
$\frac{\partial}{\partial m_{c}} P\left(E_{0}\right)<0 \quad \Rightarrow \quad$ The differences tend to cancel in the radiative branching ratio.

The final result of the SM calculation:

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{NNLO}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \text { hep-ph/0609232, using the 1S scheme, } \\ (3.26 \pm 0.24) \times 10^{-4}, & \text { following the kin scheme analysis of } \\ \text { arXiv:0805.0271, but } \bar{m}_{c}\left(\bar{m}_{c}\right)^{3 l o o p} \\ \text { rather than } \bar{m}_{c}\left(\bar{m}_{c}\right)^{110 o p} \text { in } P\left(E_{0}\right) .\end{cases}$

Contributions to the total uncertainty:

5% non-perturbative $\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)$
$\Rightarrow \quad$ Dedicated analysis necessary
See S.J. Lee, M. Neubert, G. Paz, hep-ph/0609224 $\rightarrow-1.5 \%$.
3% parametric $\left(\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{\text {sempileptonic }}^{\text {exp }}, m_{c} \& C, \ldots\right)$

$$
\begin{array}{lll}
2.0 \% & 1.6 \% & 1.1 \% \text { (1S) } \\
& & 2.5 \% \text { (kin) }
\end{array}
$$

$3 \% m_{c}$-interpolation ambiguity
\Rightarrow Complete three-loop on-shell matrix element calculation even for $m_{c}=0$ should help a lot. Work in progress by R. Boughezal, M. Czakon, T. Schutzmeier.
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right)$
$\Rightarrow \quad$ This uncertainty will stay with us.

Currently known contributions to $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ that have not been included in the estimate $(3.15 \pm 0.23) \times 10^{-4}$ in hep-ph/0609232: ($\pm 7.3 \%)$

- New/old large- β_{0} bremsstrahlung effects
[Ligeti, Luke, Manohar, Wise, 1999] [Ferroglia, Haisch, 2007, to be published]
- Four-loop mixing into the $b \rightarrow s g$ operator Q_{8}
[Czakon, Haisch, MM, hep-ph/0612329]

$$
\Rightarrow \quad+2.0 \% \text { in the } \mathrm{BR}
$$

$\Rightarrow \quad-0.3 \%$ in the BR
$\Rightarrow \quad+1.6 \%$ in the BR
[Boughezal, Czakon, Schutzmeier, arXiv:0707.3090]
[Pak, Czarnecki, arXiv:0803.0960]
[Ewerth, arXiv:0805.3911]

- Non-perturbative $\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)$ effects in the term $\sim C_{7} C_{8}$ [Lee, Neubert, Paz, hep-ph/0609224]
$\Rightarrow \quad-1.5 \%$ in the BR

Total: $+1.8 \%$ in the BR

Comments on the Multi-Scale OPE (MSOPE) calculation by T. Becher and M. Neubert, PRL 98 (2007) 022003 [hep-ph/0610067].

	$\mathcal{B}\left(E_{\gamma}>1 G e V\right)$	$\mathcal{B}\left(E_{\gamma}>1.6 \mathrm{GeV}\right)$
hep-ph/0609232 ("fixed order")	3.27×10^{-4}	3.15×10^{-4}
hep-ph/0610067 ("MSOPE")	3.27×10^{-4} (adopted from above)	3.05×10^{-4}
before adding the -1.5% of $\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$.		

There is almost a factor-of-two difference in:

For simplicity, let us set $C_{i}\left(\mu_{b}\right) \longrightarrow 0$ for $i \neq 7$. Then, in the "fixed order":

$$
\mathcal{B}\left(E_{\gamma}>E_{0}\right) / \mathcal{B}_{\text {total }}=1+\frac{\alpha_{s}\left(\mu_{b}\right)}{\pi} \phi^{(1)}\left(E_{0}\right)+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{\pi}\right)^{2} \phi^{(2)}\left(E_{0}\right)+\ldots
$$

$$
\phi^{(1)}\left(E_{0}\right)=\phi_{a}^{(1)}\left(E_{0}\right)+\phi_{b}^{(1)}\left(E_{0}\right)
$$

Terms up to $\mathcal{O}\left(x^{3}\right)$ must cancel out in $\phi_{a}^{(1)}+\phi_{b}^{(1)}$. In the current MSOPE results, the higher-order corrections to $\phi_{a}^{(1)}$ are resummed, but $\phi_{b}^{(1)}$ is retained in the "fixed order".
\Rightarrow These results are unreliable for $1 \mathrm{GeV}<E_{0}<1.6 \mathrm{GeV}$.

The SM result:

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6}^{\text {NNLO } \mathrm{GeV}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \text { hep-ph/0609232, using the 1S scheme }, \\
(3.26 \pm 0.24) \times 10^{-4}, & \begin{array}{l}
\text { following the kin scheme analysis of } \\
\\
\text { rather that.0271, but } \bar{m}_{c}\left(\bar{m}_{c}\left(\bar{m}_{c}\right)^{\text {loop }}\right. \text { in }
\end{array} \text { ilop } P\left(E_{0}\right) .\end{cases}
$$

agrees within $\sim 1 \sigma$ with the current experimental average
(Belle, Babar, Cleo \longrightarrow HFAG)

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\left(3.52 \pm \underset{\text { stat \& syst }}{0.23} \pm \underset{\text { theory }}{0.09)} \times 10^{-4}\right.
$$

Missing ingredients in the perturbative NNLO matrix elements
$\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{em}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)$
LO: $G_{i j}=\delta_{i 7} \delta_{j 7}$

$\left|C_{1,2}\left(\mu_{b}\right)\right| \sim 1, \quad\left|C_{3,4,5,6}\left(\mu_{b}\right)\right|<0.07$, $C_{7}\left(\mu_{b}\right) \sim-0.3, \quad C_{8}\left(\mu_{b}\right) \sim-0.15$.

NLO: The most important $G_{i j}(i, j=1,2,7,8)$ are known since 1996. $\left\{\begin{array}{l}\text { [Greub, Hurth, Wyler, 1996] } \\ \text { [Ali, Greub, 1991-1995] }\end{array}\right.$ The remaining $G_{i j}$ are known since 2002.
$\left\{\begin{array}{l}\text { [Buras, Czarnecki, MM, Urban, 2002] } \\ \text { [Pott, 1995] }\end{array}\right.$
NNLO: Only $i, j=1,2,7,8$ have been considered so far.
Only G_{77} is fully known:

$G_{22}:$

Missing ingredients in the perturbative NNLO matrix elements
$\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{em}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)$
$\mathrm{LO}: \quad G_{i j}=\delta_{i 7} \delta_{j 7}$

$\left|C_{1,2}\left(\mu_{b}\right)\right| \sim 1, \quad\left|C_{3,4,5,6}\left(\mu_{b}\right)\right|<0.07$, $C_{7}\left(\mu_{b}\right) \sim-0.3, \quad C_{8}\left(\mu_{b}\right) \sim-0.15$.

NLO: The most important $G_{i j}(i, j=1,2,7,8)$ are known since 1996. $\left\{\begin{array}{l}\text { [Greub, Hurth, Wyler, 1996] } \\ \text { [Ali, Greub, 1991-1995] }\end{array}\right.$ The remaining $G_{i j}$ are known since 2002.

NNLO: Only $i, j=1,2,7,8$ have been considered so far.
Only G_{77} is fully known:

Large- m_{c} asymptotics of $G_{i j}\left(m_{c} \gg m_{b} / 2\right)$:

$$
\begin{array}{|llll|l|}
\hline \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{8} & \\
\hline+ & + & + & + & \mathbf{1} \\
& + & + & + & \mathbf{2} \\
& & + & - & \mathbf{7} \\
& & & - & 8 \\
\hline
\end{array}
$$

[MM, Steinhauser, 2006]

Large- β_{0} approximation for $G_{i j}$ (arbitrary m_{c}):

$$
\begin{array}{|cccc|c|}
\hline \mathbf{1} & \mathbf{2} & \mathbf{7} & \mathbf{8} & \\
\hline+ & + & + & - & \mathbf{1} \\
& + & + & - & \mathbf{2} \\
& & + & + & \mathbf{7} \\
& & & + & 8 \\
\hline
\end{array}
$$

The β_{0} corr. to G_{78}, G_{88} are small. G_{18} and G_{28} are small at the NLO.

Interpolation in m_{c}

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\underset{\text { normalization }}{X}\left[\underset{\text { perturbative }}{P\left(E_{0}\right)}+\underset{\text { non-perturbative }}{\left.N\left(E_{0}\right)\right]}\right.
$$

Expansion of $P\left(E_{0}\right)$:

$$
P=\underbrace{P^{(0)}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\left(P_{1}^{(1)}+P_{2}^{(1)}(r)\right)+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2}\left(P_{1}^{(2)}\right.}_{\text {known }}+P_{2}^{(2)}(r)+\underbrace{\left.P_{3}^{(2)}(r)\right)}_{\text {known }}
$$

$P_{1}^{(1)}, P_{3}^{(2)} \sim C_{i}^{(0)} C_{j}^{(1)}, \quad P_{2}^{(1)}, P_{2}^{(2)} \sim C_{i}^{(0)} C_{j}^{(0)}, \quad P_{1}^{(2)} \sim\left(C_{i}^{(0)} C_{j}^{(2)}, C_{i}^{(1)} C_{j}^{(1)}\right)$
Moreover: $\quad P_{2}^{(2)}=A n_{f}+B=-\frac{3}{2}\left(11-2 / 3 n_{f}\right) A+\frac{33}{2} A+B=P_{2}^{(2) \beta_{0}}+P_{2}^{(2) \mathrm{rem}}$

$$
r=\frac{m_{c}\left(m_{c}\right)}{m_{b}^{1 S}}
$$

The complete $P_{2}^{(2)}$ has been calculated only for $r \gg \frac{1}{2}$.

The NNLO corrections $P_{k}^{(2)}$ as functions of $\quad r=m_{c}\left(m_{c}\right) / m_{b}^{1 S}$

Solid: small- r expansions,
Dotted: exact,

Dashed: leading large- γ asymptotics.

Interpolation:
$P_{2}^{(2) \mathrm{rem}}(r)=x_{1}+x_{2} P_{2}^{(1)}(r)+x_{3} r \frac{d}{d r} P_{2}^{(1)}(r)+x_{4} P_{2}^{(2) \beta_{0}}(r)+x_{5}\left|A_{\mathrm{NLO}}(r)\right|^{2}$
The coefficients x_{k} are determined from the asymptotic behaviour at large r and from the requirement that either
(a) $\quad P_{2}^{(2) \mathrm{rem}}(0)=0$,
or
(b) $\quad P_{1}^{(2)}+P_{2}^{(2) \mathrm{rem}}(0)+P_{3}^{(2)}(0)=0$,
or
(c) $\quad P_{2}^{(2) \mathrm{rem}}(0)=\left[P_{2}^{(2) \mathrm{rem}}(0)\right]_{77}$.

The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio. The difference between these two cases is used to estimate the interpolation ambiguity.

Renormalization scale dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}$

"Central" values:

$$
\begin{aligned}
\mu_{0} & =160 \mathrm{GeV} \\
\mu_{b} & =2.5 \mathbf{G e V} \\
\mu_{c} & =1.5 \mathbf{G e V}
\end{aligned}
$$

Summary

- The NNLO calculation of the Wilson coefficients at $\mu=\mu_{b}$ is completed. The 4 -loop terms affect the branching ration by $\sim-4 \%$.
- An intriguing discrepancy occurs between the 1S- and kinetic scheme determinations of the normalization factor C.
- For $E_{0}=1.6 \mathrm{GeV}$ or lower, the MSOPE-resummed logarithmic perturbative corrections undergo a dramatic cancellation with the nonlogarithmic terms. Consequently, both types of terms must be treated with the same precision. Until this is done, the fixed-order results should be considered more reliable.
- The $m_{c}=0$ results for the NNLO contributions from 4-quark operators are awaited. They should allow to improve the the interpolation in m_{c}, and place it on more solid grounds.

BACKUP SLIDES

The m_{c}-dependence of $P_{2}^{(2) \mathrm{rem}}=C_{i}^{(0)}\left(\mu_{b}\right) C_{j}^{(0)}\left(\mu_{b}\right) K_{i j}^{(2) \mathrm{rem}}\left(\mu_{b}, E_{0}\right)$. Example: $\quad K_{77}^{(2) \mathrm{rem}}(2.5 \mathrm{GeV}, 1.6 \mathrm{GeV})$ as a function of m_{c} / m_{b} :

Value at $m_{c}=0: \quad$ Blokland et al., hep-ph/0506055 ($c \bar{c}$ production included). Large- m_{c} asymptotics: Steinhauser, MM, hep-ph/0609241.
 Interpolation:

The same pattern arises at $\mathcal{O}\left(\alpha_{s}^{2}\right)$:

However, only "const $+\operatorname{logs}(\delta)$ " have been included at orders $\mathcal{O}\left(\alpha_{s}^{3}\right)$ and higher in hep-ph/0610067.

