Tau Decays at the B-Factories

Alberto Lusiani

INFN and Scuola Normale Superiore Pisa

(on behalf of the BABAR and Belle collaborations)

Today's Tau factories are **BABAR** and Belle

- asymmetric colliders on Y(4S) peak ($\sqrt{s} = 10.58 \text{ GeV}$) $\sigma(\tau^+\tau^-) \approx 0.9 \text{ nb} \approx \sigma(B\overline{B}) \approx 1.1 \text{ nb}$
- similar detectors, but for PID: BABAR \Rightarrow Cherenkov detector, Belle \Rightarrow threshold Cherenkov & TOF

TAU DECAYS AT THE B-FACTORIES

Lots of tau pairs have been collected at B-factories

End May 2008:	$\int Ldt \approx 831 \mathrm{fb}^{-1}$	~764M tau pairs	End May 2008:	$\int Ldt \approx 531 \mathrm{fb}^{-1}$	~488M tau pairs
		(analyses typically u	se smaller samples)	

B-factories (recent) tau physics results can be grouped as follows

Searches for LFV

- clean and unambiguous NP probes
- tau LFV searches complementary to $\mu \rightarrow e\gamma$

(semi-)hadronic decays

- QCD and resonances studies
 - $\tau \to \pi \pi^0 \nu$ BF and spectrum for $a_{\mu}^{\pi\pi}$
- 2nd class current searches
- rare decays, small BF

V_{us} from $\tau \rightarrow s$ inclusive

small QCD theory error

Lepton universality and precision meas.

- tau lifetime
- tau mass

Lepton flavour violation in tau decays

LFV results from the B-Factories

Properties of events with a LFV violating tau decay (in CM system)

- $\Delta M = M_{\rm reco} M_{\tau} \approx 0 \quad \Delta E = E_{\rm reco} E_{\rm beam} \approx 0$
- smeared by resolution and radiative effects
- expected background from data side-bands
- count events in signal box, or max LH fit

7

A.Lusiani (INFN & SNS, Pisa)

TAU DECAYS AT THE B-FACTORIES

Heavy Quarks and Leptons – 5-9 June 2008 – School of Physics, University of Melbourne

A.Lusiani (INFN & SNS, Pisa)

TAU DECAYS AT THE B-FACTORIES

$\tau \rightarrow \ell \ell \ell \ell \text{ LFV search}$

PRL 99 251803 (2007)

- selection and SB optimized for best exp. UL
- ♦ signal efficiency 5.5–12.4%
- background estimated with 2D ΔM - ΔE fit
- expected bkg: 0.3–1.3 events
- data candidates: 0–2 events
- Cousin & Highland
- **BF** < $[3.7-8.0] \cdot 10^{-8} (90\% \text{ CL})$
- PRL 99 251803 (2007)

(arXiv:0708.3650 [hep-ex])

Mode	Eff. [%]	$N_{ m bgd}$	$\mathrm{UL}_{90}^{\mathrm{exp}}$	$N_{\rm obs}$	$\mathrm{UL}_{90}^{\mathrm{obs}}$
$e^{-}e^{+}e^{-}$	8.9 ± 0.2	1.33 ± 0.25	4.9	1	4.3
$\mu^-e^+e^-$	8.3 ± 0.6	0.89 ± 0.27	5.0	2	8.0
$\mu^+ e^- e^-$	12.4 ± 0.8	0.30 ± 0.55	2.7	2	5.8
$e^+\mu^-\mu^-$	8.8 ± 0.8	0.54 ± 0.21	4.6	1	5.6
$e^-\mu^+\mu^-$	6.2 ± 0.5	0.81 ± 0.31	6.6	0	3.7
$\mu^- \mu^+ \mu^-$	5.5 ± 0.7	0.33 ± 0.19	6.7	0	5.3

Heavy Quarks and Leptons – 5-9 June 2008 – School of Physics, University of Melbourne

A.Lusiani (INFN & SNS, Pisa)

TAU DECAYS AT THE B-FACTORIES

B-Factories LFV searches summary

	Belle		BABAR	
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁸)	(fb ⁻¹)	(10 ⁻⁸)	(fb ⁻¹)
$\mu\gamma$	4.5*	535	6.8	232
eγ	12*	535	11	232
$\mu\eta$	6.5	401	15	339
$\mu\eta'$	13	401	13	339
eη	9.2	401	16	339
$e\eta'$	16	401	24	339
$\mu\pi^0$	12	401	15	339
$e\pi^0$	8	401	13	339
$\ell\ell\ell$	2–4	535	4–8	376
<i>ℓhh</i> ′	21–155	158	7–48	221
μV^0	10–15	543	11	384
eV^0	8–19	543	10	384

	Belle		BABAR	
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁸)	(fb ⁻¹)	(10 ⁻⁸)	(fb ⁻¹)
μK _S	0.49	281		
eK _S	0.56	281		
μf ₀	3.3*	671		
ef ₀	3.4*	671		
$\Lambda \pi, \overline{\Lambda} \pi$	7.2–14	154	5.8-5.9*	237
$\Lambda K, \overline{\Lambda} K$			7.2–15*	237
$\sigma_{\ell au}/\sigma_{\mu\mu}$			400-890	211

(* preliminary) $V^0 = \omega$ for BABAR, $V^0 = \rho, \phi, K^{(\overline{v}0)}, \omega$ for Belle

Heavy Quarks and Leptons – 5-9 June 2008 – School of Physics, University of Melbourne

Progress on $\tau \rightarrow \mu \gamma$ **since pre-B-factory era**

SUSY SO(10) + seesaw – Masiero et al., NJP 6 (2004) 202

Progress on LFV from B-Factories results

Tau precision measurements and checks on the Standard Model

Lepton Universality Tests

- Standard Model (SM) predicts that leptons have same weak charged current couplings
- B-Factories can measure **several relatively less known ingredients** for LU tests below

$$\begin{aligned} \frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}} &\propto \left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{e}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2})r_{EW}^{\tau}} \\ \frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}} &\propto \left(\frac{g_{\tau}}{g_{e}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{\mu}^{2}/m_{\tau}^{2})r_{EW}^{\tau}} \\ \frac{\Gamma_{\tau \to e}}{\Gamma_{\tau \to \mu}} &\propto \left(\frac{g_{e}}{g_{\mu}}\right)^{2} = \frac{\mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{\mu}}\nu_{\tau})}{\mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau})} \frac{f(m_{\mu}^{2}/m_{\tau}^{2})}{f(m_{e}^{2}/m_{\tau}^{2})} \\ f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x \ln x \quad \text{(approximating all } m_{\nu} = 0) \\ r_{EW}^{\ell} = 0.9960 \quad \text{(EW radiative corrections, Marciano-Sirlin)} \end{aligned}$$

Precision measurements and Lepton universality

Iimited progress on lepton universality

no improvement on leptonic branching fractions (hard job matching ALEPH systematics)

V_{us} measuremements

kaon measurements limited by theory uncertainties (see e.g. arXiv:0802.3009 [hep-ex])

• for K_{I3} decays $\Delta[f_+(0)] = 0.50\%$

• for K_{l2} decays $\Delta(F_K/F_\pi) = 0.59\%$

theory uncertainty on V_{us} from tau estimated to be 0.23%

(arXiv:0709.0282v1 [hep-ph])

inclusive $BF(\tau \rightarrow s)$ \rightarrow potentially most precise/ clean V_{us} measurement if spectral functions are also measured \rightarrow simultaneous fit of V_{us} and m_s otherwise, one can use m_s from lattice QCD (now $\Delta m_s \approx 10 \text{ MeV}$) $\mathbf{R}_{\tau} = \frac{\Gamma\left[\tau^{-} \to v_{\tau} \text{hadrons}(\gamma)\right]}{\Gamma\left[\tau^{-} \to e v_{\tau} \overline{v}_{e}(\gamma)\right]} \qquad |V_{us}|^{2} = \frac{R_{\tau,\text{strange}}}{\left(R_{\tau,\text{non-strange}}/|V_{ud}|^{2}\right) - \delta R_{\tau,\text{theory}}}$ • $R_{\tau,\text{non-strange}} / |V_{ud}|^2 = 3.661 \pm 0.012$ (experiment) • $\delta R_{\tau,\text{theory}} = 0.216 \pm 0.016$ (*SU*(3) breaking, arXiv:0709.0282v1 [hep-ph]) $\blacktriangleright \Delta |V_{us}|^2 \approx \frac{\Delta \delta R_{\tau,\text{theory}}}{\left(R_{\tau,\text{non-strange}}/|V_{ud}|^2\right)} \approx 2 \cdot 0.23\%$ to fit for m_s simultaneously, must use also moments of the hadronic inv. mass distribution

$$\blacktriangleright R_{\tau}^{kl} = \int_0^{m_{\tau}^2} ds \left(1 - \frac{s}{m_{\tau}^2}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Inclusive BF($\tau \rightarrow s$) before B-Factories

Mode	$\mathcal{B}(10^{-3})$
<i>K</i> ⁻	6.81 ± 0.23
$K^{-}\pi^{0}$	4.54 ± 0.30
$ar{K}^0\pi^-$	8.78 ± 0.38
$K^-\pi^0\pi^0$	0.58 ± 0.24
$ar{K}^0\pi^-\pi^0$	3.60 ± 0.40
$K^-\pi^+\pi^-$	3.30 ± 0.28
$K^-\eta$	0.27 ± 0.06
$(\bar{K}3\pi)^{-}$ (estimated)	0.74 ± 0.30
$K_1(1270)^- \rightarrow K^- \omega$	0.67 ± 0.21
$(\bar{K}4\pi)^-$ (estimated) and $K^{*-}\eta$	0.40 ± 0.12
Sum	29.69 ± 0.86

Heavy Quarks and Leptons – 5-9 June 2008 – School of Physics, University of Melbourne

V_{us} and m_s determination before B-Factories

V_{us} precision: 1.53%

 $\epsilon = (2.2267 \pm 0.008)\%$

- $\mathsf{BF}(\tau \to K \pi^0 \nu) = (0.416 \pm 0.003 \pm 0.018) \,\%$

TAU DECAYS AT THE B-FACTORIES

A.LUSIANI (INFN & SNS, PISA)

TAU DECAYS AT THE B-FACTORIES

Heavy Quarks and Leptons – 5-9 June 2008 – School of Physics, University of Melbourne

V_{us} update using **BABAR** and Belle results

- S.Banerjee, arXiv:0707.3058v4 [hep-ex]
- Vus precision: 1.38%

Tau V_{us} status and prospects

- $V_{us}(\tau) = 0.2171 \pm 0.0030$ universality improved V_{us} from $\tau \to s$ inclusive
 - ▶ uses $V_{ud} = 97377(27)$ from PDG2006, however negligible change using updated V_{ud}
- ♦ V_{us}(unitarity) = 0.2258 ± 0.0011 using V_{ud} = 0.97418(26) [Hardy-Towner, nucl-th 0710.3181]
 - ▶ moved by 1.5 σ w.r.t. PDG 2006 → 2007 (isospin breaking Coulomb corrections)
 - V_{ud} from neutron decays differs by up to 4.5σ [0.97092(68) 0.9786(19)] (also, recent measurement of neutron lifetime is 6.5σ away from PDG2006 value)
- $V_{us} = 0.2246 \pm 0.0012$ from $K_{\ell 3}$ P.Massarotti HQL08 (FlaviaNet)
- $V_{us} = 0.2261 \pm 0.0014$ from $K_{\mu 2}$ P.Massarotti HQL08 (FlaviaNet) (my elaboration using above V_{ud})

 $|V_{us}(\tau) - V_{us}(\text{unitarity})| = 2.7\sigma$

• experimentally, it is useful to improve on V_{us} from $\tau \to s$ inclusive and also from $\frac{\mathsf{BF}(\tau \to K_v)}{\mathsf{BF}(\tau \to \pi_v)}$

27

A.Lusiani (INFN & SNS, Pisa)

TAU DECAYS AT THE B-FACTORIES

Tau decays modes with η meson

arXiv:0708.0733v1[hep-ex])

HEAVY QUARKS AND LEPTONS - 5-9 JUNE 2008 - SCHOOL OF PHYSICS, UNIVERSITY OF MELBOURNE

Tau decays modes with η meson

arXiv:0708.0733v1[hep-ex])

Comparison with predictions

- $\mathcal{C}(\tau^- \rightarrow \pi^- \pi^0 \eta v_{\tau})$ consistent with prediction based on CVC and experimentally measured $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section
 - Good agreement between data and MC (TAUOLA)
- Central value of $\mathcal{B}(\tau^- \rightarrow K^-\eta \nu_{\tau})$ and $\mathcal{B}(\tau^- \rightarrow K^-\pi^0\eta \nu_{\tau})$ slightly different from chiral theory prediction (Phys. Rev. D 55 (1997) 1436)
 - ➢ More tuning of MC needed
 - Further studies of final state dynamics and resonance formation in progress

30

- ♦ 5.4M candidates fitted
- largest systematic: π^0 efficiency
- $BF(\tau \rightarrow \pi \pi^0 \nu) = (25.12 \pm 0.04 \pm 0.38) \%$

- improved spectrum (larger stat. than LEP)
- a^{ππ}_μ close to previous existing tau estimates see H.Hayashii@FPCP08 for details

Conclusions

