The first year of Borexino data

Heavy Quarks and Leptons
June 5-9, 2008 - Melbourne (Victoria)

Davide Franco
on behalf of the Borexino Collaboration
Milano University & INFN
Neutrino Production In The Sun

pp chain:
- \(pp, \ pep, \ ^7\text{Be}, \) and \(^8\text{B} \nu \)

\[
p + p \rightarrow 2\text{H} + e^+ + \nu_e
\]

\[
p + e^- + p \rightarrow 2\text{H} + \nu_e
\]

“\(\text{pep} \)”

- \(^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + p + p \)
- \(^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \)
- \(^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e \)
- \(^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \)
- \(^8\text{B} \rightarrow ^8\text{Be} + e^+ + \nu_e \)

\[^8\text{Be} \rightarrow ^4\text{He} + ^4\text{He} \]

CNO cycle:
- \(^{13}\text{N}, \ ^{15}\text{O}, \) and \(^{17}\text{F} \nu \)

\[^{13}\text{N} \rightarrow ^{13}\text{C} + \gamma \]

\[^{15}\text{O} \rightarrow ^{15}\text{N} + \gamma \]

\[^{17}\text{F} \rightarrow ^{17}\text{O} + \gamma \]

- \(^{7}\text{Be} \rightarrow ^{7}\text{Li} + \nu_e \)
- \(^{7}\text{Be} \rightarrow ^{7}\text{B} + \gamma \)
- \(^{8}\text{B} \rightarrow ^{8}\text{Be} + e^+ + \nu_e \)

- \(^{8}\text{Be} \rightarrow ^{4}\text{He} + ^{4}\text{He} \)

- \(^{4}\text{He} \rightarrow ^{4}\text{He} + ^{4}\text{He} \)

Flux (cm\(^{-2}\) s\(^{-1}\))

Neutrino Energy in MeV

Davide Franco – Milano University & INFN
Solar Neutrino Spectra

Davide Franco – Milano University & INFN

Gallex GNO
Homestake Sage
SNO SuperK (real time)

Borexino (real time)
The Solar Physics with Borexino

One fundamental input of the Standard Solar Model is the *metallicity* of the Sun - abundance of all elements above Helium:

- The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. 85, 161 (1998)), is *agreement within 0.5 in %* with the solar sound speed measured by helioseismology.

- Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A 777, 1 (2006)) indicates a metallicity *lower by a factor ~2*. This result destroys the agreement with helioseismology.

<table>
<thead>
<tr>
<th>[cm$^{-2}$ s$^{-1}$]</th>
<th>pp (10^{10})</th>
<th>pep (10^{10})</th>
<th>hep (10^3)</th>
<th>7Be (10^9)</th>
<th>8B (10^6)</th>
<th>13N (10^8)</th>
<th>15O (10^8)</th>
<th>17F (10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS05 AGS 98</td>
<td>6.06</td>
<td>1.45</td>
<td>8.25</td>
<td>4.84</td>
<td>5.69</td>
<td>3.07</td>
<td>2.33</td>
<td>5.84</td>
</tr>
<tr>
<td>BS05 AGS 05</td>
<td>5.99</td>
<td>1.42</td>
<td>7.93</td>
<td>4.34</td>
<td>4.51</td>
<td>2.01</td>
<td>1.45</td>
<td>3.25</td>
</tr>
<tr>
<td>Δ</td>
<td>-1%</td>
<td>-2%</td>
<td>-4%</td>
<td>-12%</td>
<td>-23%</td>
<td>-42%</td>
<td>-47%</td>
<td>-57%</td>
</tr>
</tbody>
</table>

Solar neutrino measurements can solve the problem!
Solar Physics Goals

- First ever observations of **sub-MeV neutrinos** in real time
- Check the balance between photon **luminosity** and neutrino luminosity of the Sun
- **CNO** neutrinos (direct indication of metallicity in the Sun’s core)
- **pep** neutrinos (indirect constraint on *pp* neutrino flux)
- Low energy (3-5 MeV) 8B neutrinos
- Tail end of **pp neutrino spectrum**?
Neutrino Physics Goals

Test of the **matter-vacuum oscillation transition** with 7Be, pep, and low energy 8B neutrinos

Check of the **mass varying neutrino model** (Barger et al., PRL 95, 211802 (2005))

Limit on the **neutrino magnetic moment** by analyzing the 7Be energy spectrum and with Cr source

Moreover: **geoneutrinos and supernovae**
Abruzzo
120 Km da Roma

Laboratori Nazionali del Gran Sasso
Assergi (AQ)
Italy
~3500 m.w.e

Borexino – Rivelatore e impianti

Laboratori esterni
Detection principles and \(\nu \) signature

- **Borexino** detects solar \(\nu \) via their **elastic scattering off electrons** in a volume of **highly purified liquid scintillator**
 - Mono-energetic \(0.862 \text{ MeV} \) \(^7\text{Be} \) \(\nu \) are the main target, and the only considered so far
 - Mono-energetic pep \(\nu \) , CNO \(\nu \) and possibly pp \(\nu \) will be studied in the future

- **Detection via scintillation light:**
 - Very low energy threshold
 - Good position reconstruction
 - Good energy resolution

BUT…

- No direction measurement
- The \(\nu \) induced events can’t be distinguished from other \(\beta \) events due to natural radioactivity

- **Extreme radiopurity of the scintillator** is a must!

Typical \(\nu \) rate (SSM+LMA+Borexino)

![Graph showing typical neutrino rate](image)
Borexino Background

Expected solar neutrino rate in 100 tons of scintillator ~ 50 counts/day (\(\sim 5 \times 10^{-9} \text{ Bq/Kg} \))

Just for comparison:

Natural water \(\sim 10 \text{ Bq/Kg} \) in \(^{238}\text{U},^{232}\text{Th}\) and \(^{40}\text{K}\)

Air \(\sim 10 \text{ Bq/m}^3 \) in \(^{39}\text{Ar},^{85}\text{Kr}\) and \(^{222}\text{Rn}\)

Typical rock \(\sim 100-1000 \text{ Bq/m}^3 \) in \(^{238}\text{U},^{232}\text{Th}\) and \(^{40}\text{K}\)

BX scintillator must be 9/10 order of magnitude less radioactive than anything on earth!

- Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)
- Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (\(^{7}\text{Be}\))
- Underground purification plant to distill scintillator components.
- Gas stripping of scintillator with special nitrogen free of radioactive \(^{85}\text{Kr}\) and \(^{39}\text{Ar}\) from air
- All materials electropolished SS or teflon, precision cleaned with a dedicated cleaning module
Detector layout and main features

Scintillator:
270 t PC+PPO in a 150 μm thick nylon vessel

Stainless Steel Sphere:
2212 PMTs
1350 m³

Nylon vessels:
Inner: 4.25 m
Outer: 5.50 m

Water Tank:
γ and n shield
μ water Č detector
208 PMTs in water
2100 m³

Carbon steel plates

20 legs
PMTs: PC & Water proof

Nylon vessel installation

Installation of PMTs on the sphere
Borexino background

<table>
<thead>
<tr>
<th>Radiosotope</th>
<th>Concentration or Flux</th>
<th>Strategy for Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Source</td>
<td>Typical</td>
</tr>
<tr>
<td>μ</td>
<td>cosmic</td>
<td>~200 s(^{-1}) m(^{-2})</td>
</tr>
<tr>
<td></td>
<td>at sea level</td>
<td></td>
</tr>
<tr>
<td>Ext. γ</td>
<td>rock</td>
<td></td>
</tr>
<tr>
<td>Int. γ</td>
<td>PMTs, SSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water, Vessels</td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td>Intrinsic PC/PPO</td>
<td>~10(^{-12})</td>
</tr>
<tr>
<td>238U</td>
<td>Dust</td>
<td>~10(^{-5})-10(^{-6}) g/g</td>
</tr>
<tr>
<td>232Th</td>
<td>Organometallic (?)</td>
<td>~10(^{-5}) (dust) (in scintillator)</td>
</tr>
<tr>
<td>7Be</td>
<td>Cosmogenic (12C)</td>
<td>~310(^{-2}) Bq/t</td>
</tr>
<tr>
<td>40K</td>
<td>Dust, PPO</td>
<td>~210(^{-6}) g/g (dust)</td>
</tr>
<tr>
<td>210Pb</td>
<td>Surface contam. from 222Rn decay</td>
<td></td>
</tr>
<tr>
<td>210Po</td>
<td>Surface contam. from 222Rn decay</td>
<td></td>
</tr>
<tr>
<td>222Rn</td>
<td>air, emanation from materials, vessels</td>
<td>~10 Bq/l (air)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~100 Bq/l (water) (scintillator)</td>
</tr>
<tr>
<td>39Ar</td>
<td>Air (nitrogen)</td>
<td>~17 mBq/m(^{3}) (air)</td>
</tr>
<tr>
<td>85Kr</td>
<td>Air (nitrogen)</td>
<td>~1 Bq/m(^{3}) in air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HQL08 - Melbourne Davide Franco – Milano University & INFN
Expected Spectrum
The starting point: no cut spectrum

Measured Spectrum
- All data after basic selection cuts

Expected Spectrum
- Total Spectrum
- ^7Be

Counts/(10 keV x day x 100 tons)

Energy [MeV]

Photoelectrons [pe]
Spectrum after FV cut (100 tons)

Energy [MeV]

Counts/(10 keV x day x 100 tons)

Measured Spectrum
- All data after basic selection cuts
- After fiducial volume cut

Expected Spectrum
- Total Spectrum
- 7Be

Radial distribution in the 7Be energy range

Radial distribution of muon induced neutrons
\(\alpha/\beta \) statistical subtraction
pulse shape analysis

Measured Spectrum:
- All data after basic selection cuts
- After fiducial volume cut
- After statistical subtraction of \(\alpha \)'s

Expected Spectrum:
- Total Spectrum
- \(^7\text{Be}\)
- CNO + pep
- \(^{14}\text{C}\)
- \(^{11}\text{C}\)
- \(^{10}\text{C}\)

\(R < 3.8 \, \text{m} \)
\(\text{FV (R < 3 m)} \)
New results with 192 days of statistics

- χ^2/NDF = 185/174
- 7Be: 49 ± 3 cpd/100 tons
- 210Bi+CNO: 23 ± 2 cpd/100 tons
- 85Kr: 25 ± 3 cpd/100 tons
- 11C: 25 ± 1 cpd/100 tons
New results with 192 days of statistics

- $^7\text{Be}: 49\pm3$ cpd/100 tons
- $^{10}\text{B}i+\text{CNO}: 20\pm2$ cpd/100 tons
- $^{35}\text{Kr}: 29\pm4$ cpd/100 tons
- $^{11}\text{C}: 24\pm1$ cpd/100 tons

Fit: χ^2/NDF = 55/60
Systematic and Final Result

Estimated 1σ Systematic Uncertainties* [%]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Scintillator Mass</td>
<td>0.2</td>
</tr>
<tr>
<td>Fiducial Mass Ratio</td>
<td>6.0</td>
</tr>
<tr>
<td>Live Time</td>
<td>0.1</td>
</tr>
<tr>
<td>Detector Resp. Function</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*Prior to Calibration

Expected interaction rate in absence of oscillations:
75±4 cpd/100 tons

for LMA-MSW oscillations:
48±4 cpd/100 tons, which means:

\[
f_{\text{Be}} = 1.03^{+0.24}_{-1.03}
\]

7Be Rate: 49±3_{stat}±4_{syst} cpd/100 tons , which means

\[
f_{\text{Be}} = 1.02 \pm 0.10
\]
After Borexino

Solar Neutrino Survival Probability

- 7Be LMA Prediction
- 7Be LMA-MSI Prediction
- MaVaN Prediction
- SNO Data
- Current Borexino Data
- Ga Data after Borexino

HQL08 - Melbourne

Davide Franco – Milano University & INFN
Constraints on pp and CNO fluxes

Combining Borexino 7Be results with other experiments, the expected rate in Clorine and Gallium experiments is

$$R_l \ [\text{SNU}] = \sum_i R_{l,i} f_i P_{ee}^{l,i}$$

where

- $R_{l,i}$ and $P_{ee}^{l,i}$ are calculated in the hypothesis of high-Z SSM and MSW LMA
- R_{k} are the rates actually measured by Clorine and Gallium experiments
- f^8B is measured by SNO and SuperK to be 0.87 ±0.07
- $f^7\text{Be} = 1.02 \pm 0.10$ is given by Borexino results

Plus luminosity constraint:

$$0.919 f_{pp} + 0.075 f_{\text{Be}} + 0.0068 f_{\text{CNO}} = 1$$

$$f_{pp} = 1.004^{+0.008}_{-0.020}$$

best determination of pp flux!
Neutrino Magnetic Moment

Neutrino-electron scattering is the most sensitive test for μ_ν search

\[
\left(\frac{d\sigma}{dT} \right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu} \right)^2 - g_L g_R \frac{m_e T}{E_\nu^2} \right]
\]

EM current affects cross section:
spectral shape sensitive to μ_ν
sensitivity enhanced at low energies (c.s. $\approx 1/T$)

\[
\left(\frac{d\sigma}{dT} \right)_{EM} = \mu_\nu^2 \frac{\pi \alpha_{em}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_\nu} \right)
\]

A fit is performed to the energy spectrum including contributions from ^{14}C, leaving μ_ν as free parameter of the fit

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Method</th>
<th>$10^{-11} \mu_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperK</td>
<td>^8B</td>
<td><11</td>
</tr>
<tr>
<td>Montanino et al.</td>
<td>^7Be</td>
<td><8.4</td>
</tr>
<tr>
<td>GEMMA</td>
<td>Reactor</td>
<td><5.8</td>
</tr>
<tr>
<td>Borexino</td>
<td>^7Be</td>
<td><5.4</td>
</tr>
</tbody>
</table>
What next?
- **pep** and CNO ν fluxes
 - software algorithm based on a three-fold coincidence analysis to subtract efficiently cosmogenic 11C background
 - Muon track reconstruction

- 8B at low energy region (3-5 MeV)

- pp seasonal variations (?)

- High precision measurements
 - systematic reduction
 - calibrations

- geoneutrinos

HQL08 - Melbourne

Davide Franco – Milano University & INFN
Conclusion

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (4 MeV)
 - Two measurements reported for 7Be neutrinos
 - Best limits for pp and CNO neutrinos, combining information from SNO and radiochemical experiments
 - Opportunities to tackle pep and CNO neutrinos in direct measurement

- Borexino will run comprehensive program for study of antineutrinos (from Earth, Sun, and Reactors)
- Borexino is a powerful observatory for neutrinos from Supernovae explosions within few tens of kpc
- Best limit on neutrino magnetic moment. Improve by dedicated measurement with 51Cr neutrino source
BackUp
Expectations

Solar Neutrino Survival Probability

- ^{7}Be LMA Prediction
- ^{7}Be LMA-MSI Prediction
- MaNeN Prediction
- SNO Data
- Current Borexino Data
- Ga Data after Borexino
- Predicted Borexino Sensitivities

HQL08 - Melbourne

Davide Franco – Milano University & INFN
Spectrum after μ subtraction (above ^{14}C)

- μ are identified by the OD and by the ID
 - OD eff: $\sim 99%$
 - ID analysis based on pulse shape variables
 - Pulse mean time, peak position in time
 - Estimated overall rejection factor:
 - $> 10^4$ (still preliminary)
The starting point: no cut spectrum

^{14}C dominates below 200 KeV

^{210}Po NOT in eq. with ^{210}Pb

Mainly external γs and μs

Statistics of this plot: ~ 1 day
Spectrum after FV cut (100 tons)

- Clear 7Be shoulder
- 210Po
- 11C
- Radial distribution in the 7Be energy range
- Fast coincidence (214Bi-Po and 212Bi-Po) subtraction

Radial distribution of muon induced neutrons
\(\alpha/\beta \) statistical subtraction

Pulse shape analysis

No radial cut

R < 3.8 m

FV (R < 3 m)

HQL08 - Melbourne
Large scintillator detector potential