

Pavel Krokovny KEK

Introduction Methods Results Summary

Unitarity triangle

 $\sin 2\varphi_1(\beta)$ is measured with a good accuracy at B-factories. Measurement of all the angles needed to test SM.

Constraints on CKM parameters

Direct angle measurements ¢3 (CKMfitter world averages, 2007): sin20 0.5 • $\varphi_1/\beta = 21.5 \pm 1.0^{\circ} (B \rightarrow J/\psi K^0)$ • $\varphi_2/\alpha = 88 \pm 6^\circ$ ($B \rightarrow \rho \rho, \pi \pi$) μ 0 • $\phi_3/\gamma = 77 \pm 30^\circ$ (*B* \rightarrow *DK*) -0.5 [BaBar (SLAC), Belle (KEK)] -1 ϕ_3/γ remains the worst known element -1.5 CKM fitter $\phi_3(\phi_2)$ 0.6 🗄 0.95 0.6 0.5 sin20 0.5 Trees 0.4

 $|\mathbf{V}_{ub}|$

0.4

0.6

0.2

ō

φ₃(γ)

Ц

0.3

0.2

0.1

-0.4

-0.2

0

P. Krokovny

0.8

$B^+ \rightarrow D^0 K^+ \text{ decay}$

Need to use the decay where V_{ub} contribution interferes with another weak vertex.

Atwood-Dunietz-Soni method

D. Atwood, I. Dunietz and A. Soni, PRL **78**, 3357 (1997); PRD **63**, 036005 (2001)

Enhancement of CP-violation due to use of Cabibbo-suppressed D decays

ADS method (Belle)

Belle collaboration, 657M BB pairs [arXiv: 0804:2063, submitted to PRD(RC)] $B^- \rightarrow [K^+\pi^-]_D K^-$ (suppressed) and $B^- \rightarrow [K^-\pi^+]_D K^-$ (favored) modes are selected.

Gronau-London-Wyler method

[Phys. Lett. B 253 (1991) 483] [Phys. Lett. B 265 (1991) 172]

CP-asymmetry:

CP eigenstate of *D*-meson is used (D_{CP}) . **CP-even** : $D_1 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ CP-odd : $D_2 \rightarrow K_S \pi^0$, $K_S \omega$, $K_S \varphi$, $K_S \eta$...

[Phys. Lett. B 265 (1991) 172]
CP eigenstate of *D*-meson is used
$$(D_{CP})$$
.
CP-even $: D_1 \rightarrow K^+ K^-, \pi^+ \pi^-$
CP-odd $: D_2 \rightarrow K_S \pi^0, K_S \omega, K_S \varphi, K_S \eta ...$
CP-asymmetry:
 $\mathcal{A}_{1,2} = \frac{Br(B^- \rightarrow D_{1,2}K^-) - Br(B^+ \rightarrow D_{1,2}K^+)}{Br(B^- \rightarrow D_{1,2}K^-) + Br(B^+ \rightarrow D_{1,2}K^+)} = \frac{2r_B \sin \delta' \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta' \cos \gamma}$
 $\left(\delta \quad \text{for } D_1 \right)$

 $\delta' = \begin{cases} \delta & \text{for } D_1 \\ \delta + \pi & \text{for } D_2 \end{cases} \implies \mathcal{A}_{1,2} \text{ have opposite signs}$

Additional constraint:

$$\mathcal{R}_{1,2} = \frac{Br(B \to D_{1,2}K) / Br(B \to D_{1,2}\pi)}{Br(B \to D^0 K) / Br(B \to D^0 \pi)} = 1 + r_B^2 + 2r_B \cos \delta' \cos \gamma$$

4 equations (3 independent: $\mathcal{A}_1 \mathcal{R}_1 = -\mathcal{A}_2 \mathcal{R}_2$), 3 unknowns (r_B, δ, γ)

BaBar collaboration, 382M BB pairs [arXiv: 0802:4052] $\neg d \circ S: D_{CP+} \rightarrow K^+ K^-, \pi^+ \pi^-$ GLW method (BaBar)

CP-even modes: $D_{CP+} \rightarrow K^+ K^-, \pi^+ \pi^-$

CP-odd modes : $D_{CP-} \rightarrow K_S \pi^0, K_S \omega$

A _{CP+}	+0.27 ± 0.09 ± 0.04
A _{CP-}	$-0.09 \pm 0.09 \pm 0.02$
R _{CP+}	$1.06 \pm 0.10 \pm 0.05$
R _{CP-}	1.03 ± 0.10 ± 0.05

The same result expressed in Cartesian variables:

Χ ₊	-0.09 ± 0.05± 0.02
Χ_	+0.10 ± 0.05 ± 0.03
r ²	$0.05 \pm 0.07 \pm 0.03$

 x_{+} precision comparable to Dalitz analysis

GLW method (BaBar)

BaBar collaboration, 382M BB pairs, $B \rightarrow D^* K$ with $D^* \rightarrow D\pi$ and $D^* \rightarrow D\gamma$

CP-even modes: $D_{CP+} \rightarrow K^+ K^-, \pi^+ \pi^-$

CP-odd modes : $D_{CP-} \rightarrow K_S \pi^0, K_S \omega, K_S \varphi$

• $D^* \rightarrow D\pi$ and $D^* \rightarrow D\gamma$ have strong phase difference exactly 180° \Rightarrow Can combine both

A _{CP+}	-0.11 ± 0.09 ± 0.01
A _{CP-}	+0.06 ± 0.10 ± 0.02
R _{CP+}	1.31 ± 0.13 ± 0.03
R _{CP-}	1.10 ± 0.12 ± 0.04

X _*	+0.09 ± 0.07 ± 0.01
X_*	-0.02 ± 0.06 ± 0.01
r ^{*2}	0.22 ± 0.10 ± 0.03

The same result expressed in Cartesian variables:

 $(K_S \varphi$ excluded to allow comparison with Dalitz)

HQL 2008, Melbourne

P. Krokovny

Dalitz analysis method

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD **68**, 054018 (2003) A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep 2002.

$$\left| \widetilde{D}^{0} \right\rangle = \left| D^{0} \right\rangle + re^{i\theta} \left| \overline{D}^{0} \right\rangle$$
Using 3-body final state, identical for D^{0} and \overline{D}^{0} : $K_{s}\pi^{+}\pi^{-}$.
Dalitz distribution density: $d\sigma(m_{K_{s}\pi^{+}}^{2}, m_{K_{s}\pi^{-}}^{2}) \propto |\mathbf{A}|^{2} dm_{K_{s}\pi^{+}}^{2} dm_{K_{s}\pi^{-}}^{2}$

(assuming CP-conservation in D^{0} decays)

If $f(m_{K_s\pi^+}^2, m_{K_s\pi^-}^2)$ is known, parameters (r_B, δ, γ) are obtained from the fit to Dalitz distributions of $D \rightarrow K_s\pi^+\pi^-$ from $B^{\pm} \rightarrow DK^{\pm}$ decays

Belle Dalitz: $D^0 \rightarrow K_S \pi^+ \pi^-$ amplitude

Belle collaboration, 657M BB pairs [arXiv: 0803:3375]

[preliminary]

Isobar model is used as a baseline. K-matrix for systematics test.

Intermediate	Amplitude	Phase, °
state		
K _S σ ₁	1.56±0.06	214±3
$K_{\rm S} \rho(770)$	1 (fixed)	0 (fixed)
K _s ω	0.0343 ± 0.0008	112.0±1.3
$K_{\rm S} f_0(980)$	0.385 ± 0.006	207.3±2.3
$K_{s}\sigma_{2}$	0.20 ± 0.02	212±12
$K_{s}f_{2}(1270)$	1.44 ± 0.04	342.9±1.7
$K_{s} f_{0}(1370)$	1.56±0.12	110±4
$K_{s} \rho(1450)$	0.49 ± 0.08	64±11
$K^{*}(892)^{+}\pi^{-}$	1.638 ± 0.010	133.2±0.4
$K^{*}(892)^{-}\pi^{+}$	0.149 ± 0.004	325.4±1.3
$K^*(1410)^+\pi^-$	0.65±0.05	120±4
$K^*(1410)^-\pi^+$	0.42 ± 0.04	253±5
$K_{0}^{*}(1430)^{+}\pi^{-}$	2.21±0.04	358.9±1.1
$K^*_{0}(1430)^{-}\pi^{+}$	0.36±0.03	87±4
$K_{2}^{*}(1430)^{+}\pi^{-}$	0.89±0.03	314.8±1.1
$K_{2}^{*}(1430)^{-}\pi^{+}$	0.23±0.02	275±6
K*(1680)+π-	0.88±0.27	82±17
$K^*(1680)^-\pi^+$	2.1±0.2	130±6
Nonresonant	2.7±0.3	160±5

Belle Dalitz: signal selection

- |⊿E|<30 MeV
- $M_{\rm bc}$ >5.27 GeV/c²

• $|M_{\rm ks\pi\pi} - M_{\rm D}| < 11 \,\,{\rm MeV/c^2}$

• 144.9
$$\leq \Delta M \leq 145.9 \text{ MeV/c}^2 (B \rightarrow D^* K \text{ only})$$

 Continuum rejection variables cosθ_{thr}, "virtual calorimeter" Fisher discriminant: |cosθ_{thr}| < 0.8, F > -0.7 in (M_{bc}, ΔE) fit to determine background composition. Whole range is used in Dalitz fit, included into likelihood.

756 events, 29% background $(B \rightarrow DK)$ In "o149 events, 20% background $(B \rightarrow D^*K, D^* \rightarrow D\pi^0)$ (|cos

In "clean" signal region ($|\cos\theta_{\text{thr}}| < 0.8, F > -0.7$)

Belle Dalitz: fit results

[preliminary]

Fit parameters are $x_{\pm} = r_B \cos(\pm \varphi_3 + \delta)$ and $y_{\pm} = r_B \sin(\pm \varphi_3 + \delta)$ Unbinned maximum likelihood fit with event-by-event background treatment $(\Delta E, M_{bc}, |\cos \theta_{thr}|, \mathsf{F}$ included into likelihood)

P. Krokovny

HQL 2008, Melbourne

Belle Dalitz: fit results

[preliminary]

Stat. confidence level of CPV is $(1-5.5 \cdot 10^{-4})$ or 3.5σ !

 $\phi_3(\gamma)$

φ₃(γ)

P. Krokovny

HQL 2008, Melbourne

BaBar Dalitz: fit results

Fit results expressed in Cartesian coordinates $x_{\pm} = r_B \cos(\pm \gamma + \delta)$, $y_{\pm} = r_B \sin(\pm \gamma + \delta)$

BaBar Dalitz: combined result

Techniques using neutral B decays (BaBar)

Decay $B^0 \rightarrow D^0 K^{*0}$:

Both amplitudes are color-suppressed, $r_B \sim 0.4$

$$\gamma / \varphi_3 = 162 \pm 56^{\circ}, r(D^0 K^{*0}) < 0.55(90\%)$$

Techniques using neutral B decays (BaBar)

BaBar collaboration, 347M BB pairs [arXiv: 0712:3469]

Decay $B^0 \rightarrow D^{\mp} K^0 \pi^{\pm}$ Use B flavor tag, perform time-dependent Dalitz plot analysis. Sensitive to $2\beta + \gamma$

Interference between $B^0 \rightarrow D^{**0}K^0_S$ (b \rightarrow u and b \rightarrow c) and $B^0 \rightarrow D^-K^{*+}$ (b \rightarrow c)

$$2\beta + \gamma/2\varphi_1 + \varphi_3 = (83 \pm 53 \pm 20)^\circ$$

World average (UTfit)

φ₃(γ)

P. Krokovny

HQL 2008, Melbourne

Summary

- *∧* New $φ_3/γ$ measurements appeared in 2008:

 - *A* Belle Dalitz update with $D^0 \rightarrow K_S \pi + \pi$ -
 - → BaBar Dalitz update with $D^0 \rightarrow K_S \pi + \pi$ and new $D^0 \rightarrow K_S K + K$ -
- O(10°) Precision in direct measurements of $φ_3/γ$ is achieved. However $φ_3/γ$ remains the worst known angle of the Unitarity Triangle.
- The precision is statistically limited for ADS and GLW methods → good perspectives for improving the result with larger data set.
- The model uncertainty is comparable to statistical error for the Dalitz analysis. Model-independent method using charm data (CLEOc/BES3) will be used to obtain a more reliable result.

Dalitz analisys: model-independent way

Model-independent way: obtain D^0 decay strong phase from $\psi(3770) \rightarrow DD$ data $P_{p^{\pm}}(m_{+}^{2},m_{-}^{2}) = |f_{D} + (x+iy)\bar{f}_{D}|^{2} = P_{D} + r_{B}^{2}\bar{P}_{D} + 2\sqrt{P_{D}\bar{P}_{D}}[x_{+}C + y_{+}S]$ $\left. \begin{array}{l} x_{\pm} = r_B \cos(\delta \pm \varphi_3) \\ y_{\pm} = r_B \sin(\delta \pm \varphi_3) \end{array} \right\}$ Free parameters $P_{D}(m_{\perp}^{2}, m_{\perp}^{2}) = |f_{D}(m_{\perp}^{2}, m_{\perp}^{2})|^{2}$ $\overline{P}_{D}(m_{\perp}^{2},m_{\perp}^{2}) = |f_{D}(m_{\perp}^{2},m_{\perp}^{2})|^{2}$ $C(m_{+}^{2}, m_{-}^{2}) = \cos(\delta_{D}(m_{+}^{2}, m_{-}^{2}) - \delta_{D}(m_{-}^{2}, m_{+}^{2}))$ Unknown, can be obtained $S(m_{+}^{2}, m_{-}^{2}) = \sin(\delta_{D}(m_{+}^{2}, m_{-}^{2}) - \delta_{D}(m_{-}^{2}, m_{+}^{2}))$ from charm data at $\psi(3770)$: $P_{CP+}(m_{\pm}^2, m_{\pm}^2) = |f_D \pm \overline{f}_D|^2 = P_D + \overline{P}_D \pm 2\sqrt{P_D \overline{P}_D C}$ $D_{CP} \rightarrow K_{S} \pi^{+} \pi^{-}$ $P_{Corr}(m_{+}^{2}, m_{-}^{2}, m_{+}^{\prime 2}, m_{-}^{\prime 2}) = |f_{D}\bar{f}_{D}' - \bar{f}_{D}f_{D}'|^{2} =$ $\psi(3770) \rightarrow (K_{s}\pi^{+}\pi^{-})_{D} (K_{s}\pi^{+}\pi^{-})_{D}$ $= P_D \overline{P'_D} + \overline{P_D} P'_D - 2_{\gamma} \overline{P_D} \overline{P_D} P'_D \overline{P'_D} (CC' + SS')$

Contribution to ϕ_3/γ error: ~5° with CLEO data (but this is stat. error, more reliable than current model uncertainty)

~1° with BES data (20 fb⁻¹)

