B Lifetimes and Mixing

Hal Evans

Indiana University

for the CDF & DØ (BaBar & Belle) collaborations

Heavy Quarks & Leptons 2008 June 5-9, 2008 University of Melbourne

Outline

1) Why Measure Lifetimes? — Why Measure Mixing?

Note: concentrate on recent results (Tevatron), mention BaBar/Belle

See also:Iain BertramRare DecaManfred PauliniB StatesJoe BoudreauCPV in th

Rare Decays, Mixing, and $|V_{td}/V_{ts}|$ B States CPV in the B_c System

HQL08 – 6 June 2008

Weak B Lifetimes ⇒ QCD Test

Light Quark Spectators \Rightarrow equal lifetimes for all weakly decaying B-hadrons

Differences evaluated using Heavy Quark Expansion

Also: important input to EW B measurements – mixing, $\Delta\Gamma$, etc.

EW Symmetry Breaking \Leftrightarrow Mixing

EW Sym. Breaking ⇒ CKM Matrix ⇒ Different Quark Eigenstates

Weak
$$i \frac{d}{dt} \begin{pmatrix} |B^0(t)\rangle \\ |\bar{B}^0(t)\rangle \end{pmatrix} = \begin{pmatrix} M - i \frac{\Gamma}{2} & M_{12} - i \frac{\Gamma_{12}}{2} \\ M_{12} - i \frac{\Gamma}{2} & M - i \frac{\Gamma}{2} \end{pmatrix} \begin{pmatrix} |B^0(t)\rangle \\ |\bar{B}^0(t)\rangle \end{pmatrix}$$
In the SM all this described by:
• 3 angles + 1 CPV phaseCP $|B^{odd/even}\rangle = |B^0\rangle \pm |\bar{B}^0\rangle$ Beyond the SMMass $|B^{H,L}\rangle = p |B^0\rangle \pm q |\bar{B}^0\rangle$ • much less constrained

sens. to New Phys

less sens. to New Phys

SUSY example

Observables & Expectations

Observables

$$\Delta \mathbf{m} = \mathbf{M}_{H} - \mathbf{M}_{L} \qquad \sim \mathbf{2} |\mathbf{M}_{12}|$$

$$\Delta \Gamma_{\rm CP} = \Gamma_{\rm even} - \Gamma_{\rm odd} \qquad \sim 2 |\Gamma_{12}|$$
$$\Delta \Gamma = \Gamma_{\rm L} - \Gamma_{\rm H} \qquad = \Delta \Gamma_{\rm CP} \cos\phi$$

Meson	<mark>∆m/m</mark>	ΔΓ/Γ	φ	2 β
K ⁰	7.0x10 ⁻¹⁵	~1	0.007	~0
D ⁰	7.1x10 -15	0.006	~0	~0
B _d	6.4x10 ⁻¹⁴	0.004	-0.091	0.76
B _s	2.4x10 ⁻¹²	0.147	-0.004	0.04

$$\phi = \arg(-M_{12}/\Gamma_{12})$$

$$2\beta_{s} = -\arg[(V_{tb}/V_{ts})^{2}/(V_{cb}/V_{cs})^{2}]$$

 $\frac{\text{Beyond the SM}}{\phi} = \phi^{\text{SM}} + \phi^{\text{NP}}$ $2\beta = 2\beta^{\text{SM}} - \phi^{\text{NP}}$

b's in the Wild

Incoming Hard Outgoing						
Particles Interact Particles	Machine	√s (TeV)	<mark>σ(bb)</mark> (μb)	Rate* (Hz)	<l> (mm)</l>	B's
	LHC (Atlas,CMS,LHCb)	14	500	50K	1.5	all
	Tevatron (DØ,CDF)	1.96	100	6K	0.5	all
e-p	HERA (H1,Zeus)	0.32	~0.010		δ> 0.1	all
	Z-Fact (LEP, SLC)	0.09 (to 0.20)	0.007	0.035	3	all
<mark>e⁺ – e⁻</mark> <u><u>Ĝ</u> `</u>	B-Factories (BaBar,Belle, <i>CLEO</i>)	0.01	0.001	20	0.3	B _d , B⁺
H.Evans	* in acceptance					

Broad Experimental Challenges

Lifetime Analysis Overview

Record Events

Trigger

- Reconstruct B PID/Tracking
- Est. B momentum Tracking
 corr. for missing particles
- Meas. Decay Length Vertexing
 - determine resolution
- Est. Proper Time
- Est. Backgrounds
 - sidebands and MC
- Fit for Lifetime (& other par's)
 - include resolutions, corrections, backgrounds, etc.

HQL08 – 6 June 2008

Triggering

Triggers are central to Tevatron B-Physics analyses

- *b*-event rate in accept ~6 kHz
- $\sigma(bb)/\sigma(inelastic) \sim O(10^{-3})$
- can only trigger (efficiently) on *specific* decay modes

3 Level Trigger Systems

B-Reconstruction: Particle ID

Muons: a workhorse at the Tevatron

π/K Separation: hadronic final state

	Coverage	Shielding
DØ	η < 2.0	12-18 λ _ι
CDF	η < 1.0	>5 λ _ι

	Method	Sep.	Range
CDF	dE/dx (& TOF)	> 1.4 σ	2 < p _T < 10 GeV
BaBar	DIRC	>2.7 σ	p < 4.2 GeV
Belle	aerogel	ε(K)>80%	p < 4 GeV
	(dE/dx & TOF)	fake(π)<10%	

HQL08 – 6 June 2008

9

HQL08 – 6 June 2008

Tracking: Time Resolution

Exp	В	Radii [cm]	η Range	<space pts=""></space>	
CDF	1.4 T	1.5 – 137	< 2.0	>100	
D 0	2.0 T	2.8 – 52	< 3.0	20	
		1.7 w/ Layer 0	→ 25% g	jain in proper	time resolution

B⁰ and B⁺ Lifetimes

B_s Lifetime

 $\Delta \Gamma_s \neq 0 \Rightarrow$ different B_s lifetime measurements mean different things

- **1)** $B_s \rightarrow Anything$ unknown mix of Γ_{odd} and Γ_{even} - no longer used
- **2)** $B_s \rightarrow$ Flavor Specific 50% CP-odd 50% CP-even
 - DØ semi-lept: PRL 97, 241801 (2006)
 - CDF semi-lept: prelim (2005) & $B_s \rightarrow \pi D_s$: prelim (2008)
- 3) $B_s \rightarrow J/\psi \phi$ fit for CP components - DØ arXiv:0802.2855 (2008) - CDF arXiv:0712.2348 (2007)
- **4)** $B_s \rightarrow CP$ Specific 100% odd or even
 - CDF $B_s \rightarrow K^+K^-$: prelim (2006)

Recent B_s Lifetime Results

CDF: Full & Partial Reco $B_s \rightarrow \pi D_s X$

Mode 💦	Lumi (fb ⁻¹)	Cand's	Signal
CDF K⁺ K⁻	0.36	3219	718 ± 55
CDF J/ψ φ	1.7		2500
DØ J/ψ φ	2.8	48047	1976 ± 65
CDF h D _s	1.3	5566	3340.3
CDF / D _s	0.36	2297	1155 ± 27
DØ / D _s	0.4		5176 ± 242

HQL08 - 6 June 2008

B_s Flavor Specific Lifetimes

B_c Lifetime Measurements

inal state

Two heavy quarks \Rightarrow Increased decay possibilities

В

С

b

С

- theory predicts: $\tau(B_c) \sim \tau(B) / 3$

New Analyses: $B_c \rightarrow J/\psi(\mu^+\mu^-) \not\models X$

- CDF J/ψμ,e prelim
- DØ J/ψμ arXiv:0805.2614

Mode	Lumi (fb ⁻¹)	Cand's	Signal	2
$\textbf{CDF J/\psi } \mu$	1	572	257 ± 12	ן <mark>ה ק</mark>
J /ψ e		1935	659 ± 44_	J m E
DØ J/ψμ	1.3	14753	881 ± 80	0

B_c Lifetime Measurements

HQL08 – 6 June 2008

Λ_b Lifetime Measurements

Recent Λ_{h} Lifetime Analyses

Lifetime Summary

Flavor Tagging for Mixing

H.Evans

HQL08 – 6 June 2008

B_d Mixing

PRD 71, 072003 (2005)

B Mixing

Mixing and the U.T.

CKMFitter 2001: without sin 2β constraint

Consistent with Minimal Flavor Violation – but still room for Surprises !

F

Summary & Future Prospects

Remarkable Progress in B Physics since start of B-Factories & Run II

Measurement	Improvement in Accuracy since 2000
Lifetimes	factor of ~2 + significant advances in theory
B ^o mixing	>factor of 3
B _s mixing	1 st observation – 0.3% accuracy

The Future

Measurement	Status
τ(B ⁰)	systematics limited
τ(B _s)	flavor specific: approaching syst limit
	$J/\psi \phi$ analysis will continue as part of CPV studies
$B_{c}, \Lambda_{b}, \Xi_{b}, \dots$	statistics limited – focus of future lifetime work
$\Delta m_{d}^{}, \Delta m_{s}^{} (V_{td}^{}/V_{ts}^{})$	dominated by theory error \Rightarrow opportunity for lattice

Backup Slides

CKM Matrix and Mixing

$$\boldsymbol{V}^{CKM} = \begin{pmatrix} \boldsymbol{V}_{ud} & \boldsymbol{V}_{us} & \boldsymbol{V}_{ub} \\ \boldsymbol{V}_{cd} & \boldsymbol{V}_{cs} & \boldsymbol{V}_{cb} \\ \boldsymbol{V}_{td} & \boldsymbol{V}_{ts} & \boldsymbol{V}_{tb} \end{pmatrix} \approx \begin{pmatrix} \mathbf{1} - \frac{1}{2} \lambda^2 & \lambda & \boldsymbol{A} \lambda^3 (\rho - \boldsymbol{i} \eta) \\ -\lambda & \mathbf{1} - \frac{1}{2} \lambda^2 & \boldsymbol{A} \lambda^2 \\ \boldsymbol{A} \lambda^3 (\mathbf{1} - \rho - \boldsymbol{i} \eta) & -\boldsymbol{A} \lambda^2 & \mathbf{1} \end{pmatrix}$$

$$\Delta \boldsymbol{m}_{\boldsymbol{q}} = \frac{\boldsymbol{G}_{\boldsymbol{F}}^{2}}{\boldsymbol{6} \pi^{2}} \eta_{\boldsymbol{B}} \boldsymbol{S} \left(\frac{\boldsymbol{M}_{t}^{2}}{\boldsymbol{M}_{W}^{2}} \right) \boldsymbol{M}_{\boldsymbol{W}}^{2} \boldsymbol{M}_{\boldsymbol{B}\boldsymbol{q}} \boldsymbol{B}_{\boldsymbol{B}\boldsymbol{q}}^{2} \boldsymbol{f}_{\boldsymbol{B}\boldsymbol{q}}^{2} |\boldsymbol{V}_{tb} \boldsymbol{V}_{tq}^{*}|^{2}$$

H.Evans