

Jean Wicht JSPS fellow KEK

Heavy Quarks & Leptons 2008 Melbourne, 05-10 June 2008

KEKB : asymmetric e^+e^- collider (3.5 on 8.0 GeV): Tsukuba, Japan **B meson factory**: $e^+e^- \rightarrow \Upsilon(\{4,5\}S) \rightarrow BB$

Events at the $\Upsilon(5S)$: σ

$bb\ cross-section\ measured\ with\ continuum\ (qq)\ subtraction$

• Standard "B-factory" analysis techniques: B_s selected using the M_{bc} (M_{ES}) and ΔE variables: Very difficult to fully reconstruct B_s^* : de-excitation γ too soft.

• Main background is continuum: $e^+e^- \rightarrow \{u\bar{u}, dd, s\bar{s}, c\bar{c}\}$

June 6. 2008

$B_s \rightarrow \phi \gamma and B_s \rightarrow \gamma \gamma$ J. Wicht et al. (Belle), PRL 100, 121801 (2008)

Penguin decays involve loop diagrams

Good probe for New Physics: new particles can move observables away from their SM expectations

Standard Model: electromagnetic penguin $BF=(40\pm10)x10^{-6}$

Ball, Jones, Zwicky, PRD 75, 054004 (2007) Ali, Pecjak, Greub, arXiv:0709.4422 (2007)

- We do not really expect to see NP in the rate; good agreements in:
 - Partner of $B^{+/0} \rightarrow K^*(892)^{+/0} \gamma$
 - Inclusive $b \rightarrow s \gamma$

June 6. 2008

J. Wicht: Results at the $\Upsilon(5S)$ resonance

• SM: annihilation penguin $BF = (0.5 - 1.0)x10^{-6}$ Rein

Reina, Riccardi, Soni, PRD 56, 5805 (1997) Bosch, Buchalla, JHEP 0208 054 (2002)

 Very sensitive to NP! SUSY with broken R-parity Gemintern, Bar-Shalom, Eilam, PRD 70, 035008 (2004)

4th quark generation Huo, Lu, Xiao, arXiv:hep-ph/0302177 (2003) Two Higgs doublet with FCNC Aliev, Iltan, PRD 58, 095014 (1998)

Penguin decays involve loop diagrams

Good probe for New Physics: new particles can move observables away from their SM expectations

Standard Model: electromagnetic penguin $BF=(40\pm10)x10^{-6}$

Ball, Jones, Zwicky, PRD 75, 054004 (2007) Ali, Pecjak, Greub, arXiv:0709.4422 (2007)

- We do not really expect to see NP in the rate; good agreements in:
 - Partner of $B^{+/0} \rightarrow K^*(892)^{+/0} \gamma$
 - Inclusive $b \rightarrow s \gamma$

June 6. 2008

J. Wicht: Results at the $\Upsilon(5S)$ resonance

• SM: annihilation penguin $BF = (0.5 - 1.0)x10^{-6}$ Rein

Reina, Riccardi, Soni, PRD 56, 5805 (1997) Bosch, Buchalla, JHEP 0208 054 (2002)

 Very sensitive to NP! SUSY with broken R-parity Gemintern, Bar-Shalom, Eilam, PRD 70, 035008 (2004)

4th quark generation Huo, Lu, Xiao, arXiv:hep-ph/0302177 (2003) Two Higgs doublet with FCNC Aliev, Iltan, PRD 58, 095014 (1998)

Penguin decays involve loop diagrams

Good probe for New Physics: new particles can move observables away from their SM expectations

Standard Model: electromagnetic penguin $BF=(40\pm10)x10^{-6}$

Ball, Jones, Zwicky, PRD 75, 054004 (2007) Ali, Pecjak, Greub, arXiv:0709.4422 (2007)

- We do not really expect to see NP in the rate; good agreements in:
 - Partner of $B^{+/0} \rightarrow K^*(892)^{+/0} \gamma$
 - Inclusive $b \rightarrow s \gamma$

June 6. 2008

J. Wicht: Results at the $\Upsilon(5S)$ resonance

• SM: annihilation penguin $BF = (0.5 - 1.0)x10^{-6}$ Rein

Reina, Riccardi, Soni, PRD 56, 5805 (1997) Bosch, Buchalla, JHEP 0208 054 (2002)

 Very sensitive to NP! SUSY with broken R-parity
 Gemintern, Bar-Shalom, Eilam, PRD 70, 035008 (2004)

4th quark generation Huo, Lu, Xiao, arXiv:hep-ph/0302177 (2003) Two Higgs doublet with FCNC Aliev, Iltan, PRD 58, 095014 (1998)

First observation of a B_{g} radiative penguin decay!

 $\begin{array}{l} {\bf 18\pm 6 \ signal \ events} \\ {\mathcal B}(B^0_s \to \phi \gamma) = (57^{+18}_{-15} ^{+12}_{-11}) \times 10^{-6} \\ {\bf compatible \ with \ SM} \end{array}$

June 6. 2008

Above the interesting NP region!

$B_s \to D_s \ \pi \ and \ B_s \to D_s \ K$ preliminary results contributed to LLWI 2008

$B_s \rightarrow D_s \pi/K$

- $B_s \rightarrow D_s \pi$
 - Hadronic B_s decay mode with the largest BF
 - Measure $\boldsymbol{B}_{_{\!S}}$ and $\boldsymbol{B}_{_{\!S}}^{^*}$ masses
 - Measure $B_s^{(*)}B_s^{(*)}$ production fractions at the $\Upsilon(5S)$
 - Help hadron collider experiments to normalize their $B_s^{}$ BF
- $\mathbf{B}_{s} \rightarrow \mathbf{D}_{s} \mathbf{K}$
 - Cabibbo-suppressed decay: BF ~10x smaller than $D_s \pi$.
 - Two interfering diagrams: $b \rightarrow c$ and $b \rightarrow u \Rightarrow access \phi_3(\gamma)!$

Results: $B \rightarrow D$ Κ

Only $B_s^*B_s^*$ signal is considered

June 6. 2008

J. Wicht: Results at the $\Upsilon(5S)$ resonance

RFI I

$\Upsilon(5S) \rightarrow \Upsilon(nS) \pi\pi$ $\wp\mu$ K.-F. Chen et al. (Belle), PRL 100, 112001 (2008)

June 6. 2008

Belle with 477 fb⁻¹: A. Sokolov et al., PRD 071103 (2007)

\Rightarrow expect nothing with 20 fb⁻¹ at $\Upsilon(5S)$

June 6. 2008

June 6. 2008

Moreover, models don't well really agree with data

June 6. 2008

(C) Rates and interpretation

Process	$\Gamma_{\rm total}$	$\Gamma_{e^+e^-}$	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$	
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	$0.032~{\rm MeV}$	0.612 keV	0.0060 MeV	Rates of $\Upsilon(nS) \rightarrow \Upsilon(1S) \pi \pi$
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$	$0.020~{\rm MeV}$	0.443 keV	$0.0009~{\rm MeV}$	
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	$20.5~{\rm MeV}$	0.272 keV	$0.0019~{\rm MeV}$	
" $\Upsilon(5S)$ " $\to \Upsilon(1S)\pi^+\pi^-$	$110~{\rm MeV}$	$0.31 \ \mathrm{keV}$	$0.59 { m ~MeV}$	More than 100 times larger!

- Can the $\Upsilon(5S)$ (1⁻⁻ bb state) have such rate? "Maybe yes" ¬
- But this could also be a new Y_b particle!
 - The "b" analogous to many Y_c particles that decay to $\psi(\{1,2\}S) \prod \prod$

Hou, PRD 74, 017504 (2006)

- December 2007: energy scan
 - ~Υ(5S) → ~Υ(6S)
 - Look at the $\Upsilon(\{1,2\}S)\pi\pi$ distributions
 - Results soon!

Belle Discovers More "New Particles" A Y_b state ?: Observation of an anomalously large rate for "Upsilon(5S)" \rightarrow Upsilon(1,2S) $\pi^{\dagger}\pi^{-1}$ K.F.Chen et al., <u>PRL 100, 112001 (2008)</u>(arXiv:0710.2577) Z(4430): A charged charmonium-like resonant structure S.K. Choi, S.L. Olsen et al., PRL 100, 142001 <u>(2008) (arXiv:0708.1790)</u> Press release (<u>English , Japanese) CERN</u> Courier article Y(4660): X. L. Wang et al, PRL 99, 142002 (2007) (rXiv:0707.3699) Y(4008): C.Z. Yuan et al, PRL 99, 182004 (2007) (arXiv:0707.2541) X(4160): P. Pakhlov et al., arXiv:0708.3812 (to appear in PRL) psi(4415)->DD₂: G.Pakhlova et al, PRL 100, 062001 (2008) (arXiv:0708.3313) D_{c1}(2700): J. Brodzicka et al., <u>PRL 100, 092001 (2008)</u> (<u>arXiv:0707.3491</u>)

June 6. 2008

J. Wicht: Results at the $\Upsilon(5S)$ resonance

Meng, Chao, PRD 77, 074033 (2008) Simonov, JETP Lett. 87, 121 (2008)

Semileptonic B_s decays $B_s \rightarrow X^- l^+ \nu$ reliminary results contributed to EPS 200

Preliminary results contributed to EPS 2007 arXiv:0710.2548 [hep/ex]

 $B \rightarrow X^{-} l^{+} \nu$

- Using same sign ${\rm D_s}\,{\rm tag}{\rm :}\,\Upsilon(5S)\to B^0_s\bar{B}^0_s$

- It makes backgrounds small and reducible:
 - 1. BB: low prob for B^0 mixing (subtracted using $\Upsilon(4S)$ data)
 - 2. Continuum is small (subtracted using continuum data)
 - 3. Other bkgs subtracted using MC: mis-id leptons, leptons from J/ ψ , ...

 $B^0_{\mathfrak{s}} \to X l^+ \bar{\nu}$

 $\bar{B}^0_s \xrightarrow{50\% \text{ mix}} B^0_s \to YD^+_s$

Results: $B_{-} \rightarrow X^{-} l^{+} \nu$

Disentangle with a fit: primary leptons (signal, high momentum) • and secondary leptons (ex.: $B_{g} \rightarrow D_{g}^{+}(l^{+})$, low momentum)

Conclusion

- With a 24 fb⁻¹ data sample recorded at the $\Upsilon(5S)$, Belle has obtained many interesting results:
 - $\mathbf{B_s} \rightarrow \mathbf{D_s} \mathbf{\pi}$: study of the decay $\rightarrow m_{Bs}$, m_{Bs*} , $B_s^{(*)} B_s^{(*)}$ production fractions
 - $\mathbf{B}_{\mathbf{s}} \rightarrow \mathbf{D}_{\mathbf{s}} \mathbf{K}$: evidence for this interesting mode
 - $\mathbf{B}_{s} \rightarrow \boldsymbol{\varphi} \boldsymbol{\gamma}$: first observation of a radiative Penguin decay of the \mathbf{B}_{s} meson
 - $\mathbf{B}_{s} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}$: best upper limit, observation only possible at an e⁺e⁻ collider!
 - $B_{_{\!\!S}}^{}\to X^{-}\,l^{+}\,\nu {:}$ first measurement of the inclusive semileptonic decay of the $B_{_{\!\!S}}^{}$
 - $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$: should we really speak of a 5S resonance?
 - Results of the scan for this summer!