IXth Heavy Quarks and Leptons (HQ&L 2008) 05-09 June 2008, Melbourne, Australia

Lepton Flavour Violating Muon Decay at MEG

Hajime NISHIGUCHI University of Tokyo on behalf of the MEG collaboration

CONTENTS

- Lepton Flavor Violation @ Muon
- Section MEG Experiment
 - Beam and Detector
 - Engineering Run 2007
 - Physics Run 2008
- $\stackrel{\ensuremath{\wp}}{
 ightarrow}$ Conclusion

Lepton Flavor Violation @ Muon

- Quark Sector
 - Mixed by CKM mechanism
 - Experimentally Verified
 - ➡ B factories

🯺 Quark Sector

- Mixed by CKM mechanism
- Experimentally Verified
 - ➡ B factories

- neutral Lepton Sector
 - Neutrino Oscillation
 - Experimentally Verified
 - SK, SNO, KamLAND, etc.

- Quark Sector
 - Mixed by CKM mechanism
 - Experimentally Verified
 - ➡ B factories
- Sector Sector
 - source from beyond SM ??
 - never observed yet !!
- neutral Lepton Sector
 - Neutrino Oscillation
 - Experimentally Verified
 - SK, SNO, KamLAND, etc.

Why charged LFV has never been observed ?

Why charged LFV has never been observed ?

Why Charged LFV is Interesting ?

- Only charged LFV has never been observed
- $\stackrel{\scriptstyle \bigvee}{\scriptstyle \nu}$ Neutrino Oscillation is possible by "SM + ν mass"
- Quark Mixing is generally contaminated by SM

charged LFV is "NEW PHYSICS"

Subscription Experimental Upper Limit is already sensitive to predicted region $\Im e.g. \ \mu \rightarrow e\gamma$ is the most sensitive mode to search for charged LFV

History of $\mu \rightarrow e \gamma$ Search Experiment

- current experimental limit : Br($\mu \rightarrow e\gamma$) = 1.2x10⁻¹¹
 - ➡ by MEGA, *PRL* **83** (1999) 1521
- Br($\mu \rightarrow e\gamma$) = 10⁻¹¹~10⁻¹⁵ are predicted by theories
- predicted branching ratios are within the reach of the next experiments

History of $\mu \rightarrow e\gamma$ Search Experiment

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

$\mu \rightarrow e \gamma$ Signature & Background

• Signal

- $E_e = E_Y = m_{\mu}/2 = 52.8 MeV$
- $\theta = 180 \text{deg.}$
- time coincidence

Clear 2-body kinematics use μ^+ to avoid capture inside stopping target Background dominated by Accidental overlap - lower muon beam rate is better

- DC muon beam is the best

- Background
 - radiative muon decay

accidental overlap

Requirements for $\mu \rightarrow e\gamma$ Search

High Intensity & DC Muon Source

Good Energy/Angle/Timing Resolution

Operational in High Rate

Requirements for $\mu \rightarrow e\gamma$ Search

MEG Experiment

MEG Concept and Detector Apparatus

MEG Concept and Detector Apparatus

Muon Beam

Requirements

- Powerful Proton Driver
- DC Beam is Better than Pulsed
- Surface Muon is Better than Cloud
- Paul Scherrer Institut (PSI) is the Best
 - World Most Powerful Proton Cyclotron
 - 590 MeV, >2mA
 - Surface Muon , DC Beam
 - π E5 Beam-line is setup for MEG
 - Up to $10^8 \ \mu^+$ /sec is Available

590 MeV Ring Cyclotron @ PSI

production target

Positron Spectrometer - Overview

Drift Chamber - Overview

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

Completed Drift Chamber System

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

Completed Drift Chamber System

Timing Counter

2-layers of scintillators

- Scintillator bars (outer layer), read out by PMTs <u>for timing</u>
 - 30 bars with 2" PMTs at both ends
- Scintillator fibres (inner layer), read out with APDs <u>for z-trigger</u>
 - 256 fibres with APDs at both ends
- Goal : σ_T~40 ps

COBRA solenoid

HQ&L2008

Liquid Xenon Photon Detector - Why Liquid Xe ?

- Good Resolutions
 - Large Light Yield (80% of Nal)
 - *W*_{ph} = 22.4 eV
- Pile-up Event Rejection
 - Fast Response
 - Short Decay
 - τ_s =4.2ns, τ_T =45ns
- Good Uniformity

	NaI	BGO	GSO	Liq. Ar	Liq. Xe
effective Atomic Number	50	73	58	18	54
Density (g/cm ³)	3.7	7.1	6.7	1.4	3.0
Relative Light Output (%)	100	15	20-40	67	80
Decay Time (ns)	230	300	60	6 / 1000	4 / 22

MEG Liquid Xe Detector

MEG Liquid Xe Detector - Assembly

DAQ - Waveform Sampler

MEG Engineering Run 2007

MEG 2007

- All the detector components were installed in summer 2007
- Engineering Run started (Conditioning + Calibration + Commissioning)
 - September
 - Spectrometer Conditioning with Cosmic-ray
 - Xenon Liquefaction and Liquid Transfer
 - October
 - Muon Beam Commissioning
 - Timing Counter Calibration in COBRA with Cosmic-ray
 - DC wire alignment with Cosmic-ray w/o COBRA
 - November
 - Spectrometer Conditioning/Calibration Runs with Michel e⁺ @ low/full intensity
 - Liquid Xenon Purification, Calibration Runs with α -ray, γ -ray from CW accelerator
 - December (~until Christmas)
 - $\mu \rightarrow e\gamma$ Run (1.1 M triggers recorded, 25 h of live time)
 - $\pi^0 \rightarrow \gamma \gamma$ Run for Liquid Xenon Energy Calibration

Spectrometer Calibrations

Sealibration Procedures were established in Engineering Run 2007

- DC Wire is relatively aligned by using Cosmic-ray straight track w/o B-field
- z-coordinate reconstruction is calibrated by using vernier pad zig-zag period
- XT-relation is calibrated by collecting tremendous Michel e⁺ tracks (>5M trig.)

Track Finder

Track Fitting

Fitting is carried out based on Kalman filter technique

- track interpolation is done by numerical integration
- should be taken into account B-field map precisely (due to COBRA field)

Spectrometer Performances

Timing Counter : Intrinsic Timing Resolution

- Time Difference b/w two φ-counter
- 52 ps of timing resolution

Sample Event Display (Spectrometer)

Sample Event Display (Liq.-Xenon Detector)

Four tools of Xenon Calibration

Xenon Purification

Figure Impurity contamination can cause absorption of scintillation light

- H₂O, O₂ etc.
- Circulation pump (100 liter/h) with Molecular sieves (>24g water absorption)
- Light yield for 17.6 MeV γ is utilized to monitor

Summary of Obtained Performances in 2007

In 2007, several problems were found and repaired during shutdown.

	Run 2007 Can be improved ?	
γ -Energy Resolution (%)	6.5	yes (noise/impurity)
γ -Timing Resolution (ns)	0.27	yes (clock for DRS)
γ -Position Resolution (mm)	15	yes (noise/impurity)
γ -Detection Efficiency (%)	>40	no
e ⁺ Momentum Resolution (%)	2.1	yes (missing channel/noise)
e ⁺ Timing Resolution (ns)	0.12	yes (clock for DRS)
e ⁺ Angle Resolution (mrad)	17	yes (missing channel/noise)
e ⁺ -Detection Efficiency (%)	39	yes (missing channel/noise)

MEG Physics Run 2008

MEG 2008

🗳 Jan.-Apr.

- Detector Maintenances and Repairs were done
 - Bad Components (PMT, DC, etc.) were replaced
 - Better Molding for DC to avoid discharge
 - New Purification System for Liquid Xenon Detector

🗳 Apr.-May.

- Detector Re-Installation was Completed
- Xenon Purification Started
- Spectrometer Conditioning Started

🖗 May.-Jul.

Engineering Run 2008 (Conditioning + Calibration + Commissioning)

🖗 Aug.-Dec.

- "MEG Physics Run 2008" will start in August
- <u>20 Beam-Weeks of Data Acquisition is scheduled</u>
- DRS Upgrade is planed

Prospects for MEG Physics Run 2008

	2007 (Measured)	2008 (Prospects)
γ -Energy Resolution (%)	6.5	
γ -Timing Resolution (ns)	0.27	
γ -Position Resolution (mm)	15	
γ -Detection Efficiency (%)	>40	
e ⁺ Momentum Resolution (%)	2.1	
e ⁺ Timing Resolution (ns)	0.12	
e ⁺ Angle Resolution (mrad)	17	
e ⁺ -Detection Efficiency (%)	39	
Muon Stopping Rate (107 /sec)	3	
Running Time (week)	8	
Single Event Sensitivity (10 ⁻¹³)	-	
Accidental Rate (10 ⁻¹³)	-	
Number of Expected Background	-	
90 % C.L. Limit (10 ⁻¹³)	-	

(* very pessimistic, possibly improved)

Prospects for MEG Physics Run 2008

	2007 (Measured)	2008 (Prospects)
γ -Energy Resolution (%)	6.5	5.0
γ -Timing Resolution (ns)	0.27	0.15 *
γ -Position Resolution (mm)	15	9.0
γ -Detection Efficiency (%)	>40	>40
e ⁺ Momentum Resolution (%)	2.1	1.1
e ⁺ Timing Resolution (ns)	0.12	0.12 *
e ⁺ Angle Resolution (mrad)	17	17. *
e ⁺ -Detection Efficiency (%)	39	65
Muon Stopping Rate (107 /sec)	3	3
Running Time (week)	8	20
Single Event Sensitivity (10 ⁻¹³)	-	
Accidental Rate (10 ⁻¹³)	-	
Number of Expected Background	-	
90 % C.L. Limit (10 ⁻¹³)	-	

(* very pessimistic, possibly improved)

Prospects for MEG Physics Run 2008

	2007 (Measured)	2008 (Prospects)
γ -Energy Resolution (%)	6.5	5.0
γ -Timing Resolution (ns)	0.27	0.15 *
γ -Position Resolution (mm)	15	9.0
γ -Detection Efficiency (%)	>40	>40
e ⁺ Momentum Resolution (%)	2.1	1.1
e ⁺ Timing Resolution (ns)	0.12	0.12 *
e ⁺ Angle Resolution (mrad)	17	17. *
e ⁺ -Detection Efficiency (%)	39	65
Muon Stopping Rate (107 /sec)	3	3
Running Time (week)	8	20
Single Event Sensitivity (10 ⁻¹³)	-	2.6
Accidental Rate (10 ⁻¹³)	-	1.0 *
Number of Expected Background	-	0.4
90 % C.L. Limit (10 ⁻¹³)	-	7.2

(* very pessimistic, possibly improved)

Conclusion

Final Formet Searches for LFV in muon with 10⁻¹³ sensitivity

- With this Sensitivity, MEG Can Probe the Most Promising Parameter Region Predicted by Many Models
- Discovery of $\mu \rightarrow e\gamma$ = New Physics Beyond SM

Construction of the MEG-Apparatus was Completed in 2007

- Engineering Run 2007 was carried out, Calibration Procedure was Established
- Successful Data Acquisition in 2007
- 2x10¹² Muons Stopped on the Target
- All Detector Worked Fine, But Several Problems Also Found

In 2008, MEG will Start Physics Run in August !!

- Detector Upgrade/Repair and Re-Installation Completed
- Engineering Run is Starting
- 20 weeks of Data Acquisition
- $Br(\mu \rightarrow e\gamma)^{2008} < 7.2 \times 10^{-13}$ (90%C.L.) of sensitivity is conservatively expected

Backup Slides

Muon Stopping Target

Requirements
 Light Material
 Thin

(Plastic)

DAQ -Trigger

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

05-09 Jun. 2008, Melbourne

Positron Spectrometer

Very high counting rate

- the most intense DC muon beam in the world
- muon stopping rate : 3x10⁷ muon/sec

<u>Good momentum/position/timing resolution</u>

- aiming excellent sensitivity
- 0.4% momentum resolution, 300µm position resolution for both direction(r,z) and 40 ps timing resolution

Low-mass material

- 52.8MeV positron can be affected by coulomb multiple scattering easily
- γ background generation should be suppressed as much as possible

COBRA Solenoid

low energy e⁺ quickly swept out

constant bending radius independent of emission angles

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

COBRA Magnet and Special Gradient of B-field

Hajime NISHIGUCHI @ Univ. of Tokyo

05-09 Jun. 2008, Melbourne

Benefit of COBRA field

Benefit of COBRA field

Superconducting Solenoidal Magnet (Design)

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

DC Characteristics Simulation (Garfiled)

Vernier Pad Method

Making of MEG Drift Chamber

Timing Counter

- 2-layers of scintillators
 - Scintillator bars (outer layer), read out by PMTs for timing
 - Scintillator fibres (inner layer), read out with APDs for z-trigger
- Obtained goal $\sigma_T \sim 40$ psec (100 psec FWHM)
- This is Best existing Timing Counter

Expe. application	size(cm)	Scinti.	PMT	L(att) cm	o meas)	σ (exp)
G.D.Agostini	3x15x100	NE114	XP2020	200	120	60
T.Tanimori	3x20x150	SCSN38	R1332	180	140	110
T.Sugitate	4x3.5x100	SCSN23	R1828	200	50	53
R.T.Gile	5x10x280	BC408	XP2020	270	110	137
TOPAZ	4.2x13x400	BC412	R1828	300	210	240
R.Stroynowski	2x3x300	SCSN38	XP2020	180	180	420
Belle	4x6x255	BC408	R6680	250	90	143
MEG	4x4x90	BC404	R5924	270	38	43

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

05-09 Jun. 2008, Melbourne

Liquid Xenon and Scintillation Light

Results of Liquid Xenon Prototype

100 liter Prototype Detector

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

05-09 Jun. 2008, Melbourne

Drift Chamber Pressure Equalization System

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

Drift Chamber Stability

Hajime NISHIGUCHI @ Univ. of Tokyo

HQ&L2008

05-09 Jun. 2008, Melbourne

Physics Background Rate

• For MEG 2008, Physics Background < 1.1×10⁻¹⁴

Accidental Background Rate

Accidental Background

$$\mathcal{B}_{acc} = \mathcal{R}_{\mu} \cdot (2\delta x) \cdot \left[\frac{\alpha}{2\pi} (\delta y)^{2} (\ln(\delta y) + 7.33)\right] \times \left(\frac{\delta \theta^{2}}{4}\right) \cdot (2\delta t).$$

- For MEG 2008, Physics Background < 1.0×10⁻¹³
- For MEG 2008, Number of Expected Background Event = 0.5

MEG Sensitivity 2008 (assuming 24 weeks daq)

• Single Event Sensitivity

$$\mathcal{B}(\mu^+ \to \mathrm{e}^+ \gamma) = \frac{1}{\mathcal{R}_{\mu} \cdot T \cdot (\Omega/4\pi)} \times \frac{1}{\epsilon_{\mathrm{e}} \cdot \epsilon_{\gamma} \cdot \epsilon_{\mathrm{sel}}},$$

• For MEG 2008, Single Event Sensitivity : $B^{2008}(\mu \rightarrow e\gamma) = 2.2 \times 10^{-13}$

• For MEG 2008, Feasible Upper-limit

*B*²⁰⁰⁸(*μ*→eγ) < 6.9 × 10⁻¹³ (90% C.L.)