LFV and Leptogenesis in a minimally flavor violating world

Vincenzo Cirigliano

Theoretical Division, Los Alamos National Laboratory

Outline

■ LFV, CPV & Leptogenesis: overview

Leptonic "Minimal Flavor Violation"

- Charged LFV

- Leptogenesis

Observable?

Testable?

Viable?

Correlation with CLFV?

Introduction: LFV, CPV & Leptogenesis

See-saw mechanism for m_v (Type I)

Heavy v_R $(M_R >> V_{ew})$

 $\frac{M_R}{\lambda_v}$: CP and L_i violation

See-saw mechanism for $m_{_{\!\scriptscriptstyle V}}$

1) $\mathscr{L}P$ and \mathscr{L} out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_i

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \bar{l}_k H)$$

2) B+L violation (sphalerons) ⇒

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

1) $\mathscr{L}P$ and \mathscr{L} out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_i

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \bar{l}_k H)$$

2) B+L violation (sphalerons) ⇒

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

If CP & L_i violation is communicated to particles with mass Λ ~TeV

Servable Observable LFV lepton EDMs

Key issue: can we identify signatures for the see-saw scenario?

 Quite hard in general. In this talk, I discuss correlations emerging in the context of a specific scenario, MFV

Minimal Flavor Violation

MFV hypothesis in the lepton sector

 MFV hypothesis: all flavor-breaking structures are aligned with fermion mass matrices

Introduced in the quark sector to "explain" absence of large
 non-standard FCNC from TeV scale physics.

Georgi-Chivukula '87

- Can be formulated in the EFT language, insensitive to UV

details of the underlying model

D'ambrosio-IsidoriGiudice-Strumia '02

- Its extension to leptons defines a *constrained* class of models. Tool to investigate nature / structure of flavor breaking sources

> VC-Grinstein-Isidori-Wise '05

Ŋ4

MFV hypothesis in the lepton sector

- MFV hypothesis: all flavor-breaking structures are aligned with fermion mass matrices
- m_v and m_e (λ_e) select two eigen-bases in L_L space (related by U_{PMNS})

- ◆ MFV(ℓ): BSM flavor structures are "aligned" with m_v or m_e in L_L space
 - → do not select new eigen-bases
 - ightarrow FCNC are controlled by lepton masses and U_{PMNS}

MFV in models with heavy v_R

• Spurions in L_L space:
$$\lambda_e^\dagger \lambda_e \qquad m_\nu^\dagger m_\nu \qquad \lambda_\nu^\dagger \lambda_\nu$$

MFV in models with heavy v_R

■ Spurions in L_L space:

 M_R^{-1}

$$\lambda_e^\dagger \lambda_e \qquad m_
u^\dagger m_
u \qquad \lambda_
u^\dagger \lambda_
u$$

MFV in models with heavy v_R

• Spurions in L_L space:
$$\left(\begin{array}{cc} \lambda_e^\dagger \lambda_e & m_{
u}^\dagger m_{
u} & \lambda_{
u}^\dagger \lambda_{
u} \end{array} \right)$$

$$m_{\nu} = v^2 \lambda_{\nu}^T \hat{M}_R^{-1} \lambda_{\nu}$$
 \longleftrightarrow $\lambda_{\nu} = \frac{1}{v} \hat{M}_R^{1/2} R \hat{m}_{\nu}^{1/2} U^{\dagger}$

Strict MFV definition (alignment of $m_{\nu}^{\dagger}m_{\nu}$ and $\lambda_{\nu}^{\dagger}\lambda_{\nu}$) \Rightarrow

$$\hat{M}_R = M_
u \cdot I$$
 and $R = I$

Flavor broken only by Yukawas: λ_e and λ_v [with constrained CP structure].

■ In this minimal framework (R=I), we investigate the following issues:

LFV decays: $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow e\gamma$

- What is the overall normalization of CLFV rates? Does MFV(ℓ) alleviate the lepton FCNC problem?

What pattern of LFV decays is predicted?
 Can we test it?

Leptognesis

- Is thermal leptogenesis viable in such a constrained framework?

Does successful leptogenesis constrain rate & pattern of LFV decays?

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$

■ Effective coupling governing $\ell_i \rightarrow \ell_j$ transitions

$$H_{\text{eff}} = \frac{C_W}{\Lambda^2} H^{\dagger} \bar{e}_R^i \sigma^{\mu\nu} \left(?? \right)^{ij} L_L^j F_{\mu\nu}$$

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$

■ Effective coupling governing $\ell_i \rightarrow \ell_j$ transitions

$$H_{\mathrm{eff}} = \frac{C_W}{\Lambda^2} \; H^\dagger \; \bar{e}_R^i \, \sigma^{\mu\nu} \; \left(\begin{array}{c} ? \, ? \\ ? \, ? \end{array} \right)^{ij} \; L_L^j \; F_{\mu\nu}$$

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$

■ Effective coupling governing $\ell_{\rm i} \to \ell_{\rm j}$ transitions $\propto \lambda_{\nu}^{\dagger} \lambda_{\nu} = \frac{M_{\nu}}{v^2} U \hat{m}_{\nu} U^{\dagger}$

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$

$$B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\text{min}}; \Delta m_{\nu}^2)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}$$

(i) Overall normalization controlled by $\frac{v^2M_{\nu}^2}{\Lambda^4}$. Signals within reach of future searches (MEG, Mu2e, ...) if:

$$M_{\nu} \sim 10^{9-10} \, \mathrm{GeV} \times (\Lambda/1 \, \mathrm{TeV})^2$$

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$

$$B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\text{min}}; \Delta m_{\nu}^2)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}$$

(i) Overall normalization controlled by $\frac{v^2M_{\nu}^2}{\Lambda^4}$. Signals within reach of future searches (MEG, Mu2e, ...) if:

$$M_{\nu} \sim 10^{9-10} \, \mathrm{GeV} \times \left(\Lambda/1 \, \mathrm{TeV}\right)^2$$

(ii) Signatures: MLFV *predicts* ratios of $B(\ell_a \rightarrow \ell_b \gamma)$ in terms of U_{PMNS} and mass splittings with pattern:

$$B(\tau \rightarrow \mu \gamma) >> B(\tau \rightarrow e \gamma) \sim B(\mu \rightarrow e \gamma)$$

(with $\mu \rightarrow e/\tau \rightarrow \mu$ suppression increasing as $s_{13} \rightarrow 0$)

м

Illustration: R= B($\mu \rightarrow e \gamma$)/B($\tau \rightarrow \mu \gamma$)

Pattern entirely determined by:

-
$$\Delta m^2_{atm} >> \Delta m^2_{sol}$$

-
$$\theta_{atm}$$
, $\theta_{sol} >> \theta_{13}$

$$b_{ij} = (U \frac{m_v}{v_{ew}} U^+)_{ij}$$

Νė

This framework can be tested!

- If $s_{13} \ge 0.08$, limits on $B(\mu \rightarrow e\gamma)$ preclude observing $\tau \rightarrow \mu\gamma$ at B factories
- If $\tau \rightarrow \mu \gamma$ is observed at B factories then $s_{13} < 0.08$

Reach of B factories

100

How does leptogenesis work?

Leptogenesis accounts for $\eta_B = \frac{n_B - n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$ through:

- Out of equilibrium decays of N_i in presence of $CPV \Rightarrow n_L \neq 0$
- EW sphalerons (B+L violation) convert n_L ↔ n_B

Dominant if $\Delta M_{ij} \sim \Gamma_j$ ("resonant leptogenesis")

How does leptogenesis work?

Leptogenesis accounts for $\eta_B = \frac{n_B - n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$ through:

- Out of equilibrium decays of N_i in presence of $CPV \Rightarrow n_L \neq 0$
- EW sphalerons (B+L violation) convert n_L ↔ n_B

How does leptogenesis work?

Leptogenesis accounts for $\eta_B = \frac{n_B - n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$ through:

- Out of equilibrium decays of N_i in presence of CPV ⇒ n_L≠0
- EW sphalerons (B+L violation) convert n_L ↔ n_B

Relevance of "Flavor Effects"

Abada, Davidson, Josse-Michaoux, Losada, Riotto '06

Nardi, Nir, Roulet, Racker '06

For T < T_{fl}, interactions mediated by Yukawa couplings come in equilibrium ⇒ project lepton asymmetry onto individual flavors

$$T_{\tau} \sim 10^{12} \text{ GeV}$$

Relevance of "Flavor Effects"

Abada, Davidson, Josse-Michaoux, Losada, Riotto '06

Nardi, Nir, Roulet, Racker '06

■ For $T < T_{fl}$, interactions mediated by Yukawa couplings come in equilibrium \Rightarrow project lepton asymmetry onto individual flavors

- Key consequences:
 - Washout via inverse decays is typically less effective
 - CP asymmetries $\epsilon_{i\alpha}$ are sensitive to CPV phases of U_{PMNS}

$$\epsilon_{i\alpha} = \sum_{j \neq i} \frac{1}{8\pi} \frac{\operatorname{Im}\left[(\lambda_{\nu})_{i\alpha} (\lambda_{\nu})_{\alpha j}^{\dagger} (\lambda_{\nu} \lambda_{\nu}^{\dagger})_{ij} \right]}{\left(\lambda_{\nu} \lambda_{\nu}^{\dagger} \right)_{ii}} \left(g_{s}^{(j,i)} + g_{v}^{(j,i)} \right)$$

Functions of v_R masses

MFV leptogenesis

Can happen only in the "flavored-regime": M_v < 10¹² GeV

10

MFV leptogenesis

- Can happen only in the "flavored-regime": M_v < 10¹² GeV
- MFV highly constraints the structure of the v_R mass matrix ...

$$M_{R} = M_{\nu} \left[1 + c^{(1)} \left(h_{\nu} + h_{\nu}^{T} \right) + c_{1}^{(2)} \left((h_{\nu})^{2} + (h_{\nu}^{T})^{2} \right) + c_{2}^{(2)} h_{\nu} h_{\nu}^{T} + c_{3}^{(2)} h_{\nu}^{T} h_{\nu} + c_{4}^{(2)} \left(h_{e} + h_{e}^{T} \right) + \dots \right]$$

$$h_{\nu} = \lambda_{\nu} \lambda_{\nu}^{\dagger} \qquad \qquad h_{e} = \lambda_{\nu} \lambda_{e}^{\dagger} \lambda_{e} \lambda_{\nu}^{\dagger}$$

Structures are fixed by MFV hypothesis (generated by radiative corrections)

Coefficients depend on underlying model. Typically one expects $c^{(1)} \sim log(\Lambda_{GUT}/M_R)$

MFV leptogenesis

- Can happen only in the "flavored-regime": M_v < 10¹² GeV
- MFV highly constraints the structure of the v_R mass matrix ...

$$M_{R} = M_{\nu} \left[1 + c^{(1)} \left(h_{\nu} + h_{\nu}^{T} \right) + c_{1}^{(2)} \left((h_{\nu})^{2} + (h_{\nu}^{T})^{2} \right) + c_{2}^{(2)} h_{\nu} h_{\nu}^{T} + c_{3}^{(2)} h_{\nu}^{T} h_{\nu} + c_{4}^{(2)} \left(h_{e} + h_{e}^{T} \right) + \dots \right]$$

$$h_{\nu} = \lambda_{\nu} \lambda_{\nu}^{\dagger} \qquad \qquad h_{e} = \lambda_{\nu} \lambda_{e}^{\dagger} \lambda_{e} \lambda_{\nu}^{\dagger}$$

Structures are fixed by MFV hypothesis (generated by radiative corrections)

Coefficients depend on underlying model. Typically one expects $c^{(1)} \sim log(\Lambda_{GUT}/M_R)$

... and hence the CP asymmetries:

$$\epsilon_{i\alpha} \iff \operatorname{Im}\left[(\lambda_{\nu})_{i\alpha}(\lambda_{\nu})_{\alpha j}^{\dagger}(\lambda_{\nu}\lambda_{\nu}^{\dagger})_{ij}\right]$$

Yukawa couplings in basis in which M_{ν} is diagonal

Analytic dependence of CP asymmetries on underlying parameters is understood with EFT + symmetry considerations.

But coefficients $c^{(1)}$ and $c^{(2)}$ are determined by UV details

VC-DeSimone-Isidori-Masina-Riotto '07

Numerical analysis with RGE equations

Branco-Buras-Jager-Uhlig-Weiler '06

Uhlig '07

Boundary conditions: $M_R = M_v \times I$ and R = I @ Λ_{GUT}

Parameter space scan:

- $M_v \in [10^5, 10^9]$ GeV $m_v^{min} \in [0, 0.2]$ eV, NH & IH
- $-\sin(\theta_{13}) \in [0, 0.2]$
- PMNS phases: $\delta \in [0, 2\pi]$; $\alpha_{\rm M}$, $\beta_{\rm M} \in [0, \pi]$

Results are valid for $tan(\beta) \sim O(1)$, but keep in mind that $\eta_B \propto [tan(\beta)]^2$

- Highlights of numerical analysis (Uhlig '07)
 - Leptogenesis is viable in this setup !! (for NH of light v spectrum)
 - "Flat" dependence on ${\rm M}_{\!_{\rm V}}$

- Highlights of numerical analysis (Uhlig '07)
 - Leptogenesis not viable for IH of light v spectrum (due to stronger washout)

- Highlights of numerical analysis (Uhlig '07)
 - CPV with a single PMNS phase?

(understood in terms of θ_{13} suppression)

- Impact on CLFV rates? [through handle on the scale M_v]
 - Successful MFV-Leptogenesis requires in principle $M_v < 10^{12}$ GeV (need to be at least in the 2-flavor regime)
 - Numerical analysis was performed in the 3-flavor regime M_{ν} < 10 9 GeV

$$B(\mu \to e\gamma) \sim 10^{-14} \times \left(\frac{M_{\nu}}{10^{9} \, GeV}\right)^{2} \left(\frac{1 \, TeV}{\Lambda}\right)^{4}$$

Leptogenesis constraint implies signal within reach of MEG ($\mu \rightarrow e \gamma$ @ 10⁻¹³ level) for $\Lambda \leq \text{TeV}$

Conclusions

The notion of MFV can be introduced in models with heavy v_R : M_R is flavor blind and CPV occurs only through U_{PMNS}

- CLFV Phenomenology:
 - normalization of rates depends on $(vM_v)^2/\Lambda^4$
 - pattern of predictions for ratios of LFV transitions $\mu \rightarrow e/\tau \rightarrow \mu$, ... is governed by measured leptonic mass matrices and mixing angles
- Leptogenesis is viable in this scenario ("radiative resonant leptogenesis")
 - Only in the flavored regime $M_v < 10^{12}$ GeV
 - This implies $\mu \rightarrow e \gamma$ rate within reach of MEG if $\Lambda \leq \text{TeV}$

Additional Material

MFV Effective Theory

■ Flavor symmetry of \mathcal{L}_{Gauge} [G_F =SU(3)⁵] broken *only* by λ 's

Group Theory + Effective Field Theory ⇒ investigate consequences of MFV hypothesis in great generality

), in

Washout factors

$$K_{i\alpha} \equiv \frac{\Gamma(N_i \to \ell_\alpha \bar{H})}{H(T = M_i)}$$
 $K_\alpha = \sum_i K_{i\alpha}$

$$K_{e} = (m_{1}c_{12}^{2} + m_{2}s_{12}^{2} + m_{3}s_{13}^{2})/m_{*} ,$$

$$K_{\mu} = (m_{1}c_{23}^{2}s_{12}^{2} + m_{2}c_{12}^{2}c_{23}^{2} + m_{3}s_{23}^{2})/m_{*}$$

$$K_{\tau} = (m_{1}s_{12}^{2}s_{23}^{2} + m_{2}c_{12}^{2}s_{23}^{2} + m_{3}c_{23}^{2})/m_{*}$$

$$m_* \approx 10^{-3} \text{ eV}$$

Memory Effects

De Simone - Riotto '07

Quantum Boltzmann eqs: "collision" term depends on history of the system

$$\begin{array}{lcl} \frac{\partial n_{\mathcal{L}_i}(X)}{\partial t} & = & -\int d^3z \int_0^t dt_2 \operatorname{Tr} \left[\Sigma_{\ell_i}^>(X,z) G_{\ell_i}^<(z,X) - G_{\ell_i}^>(X,z) \Sigma_{\ell_i}^<(z,X) \right. \\ & & \left. + G_{\ell_i}^<(X,z) \Sigma_{\ell_i}^>(z,X) - \Sigma_{\ell_i}^<(X,z) G_{\ell_i}^>(z,X) \right]. \end{array}$$

- Key consequence:
 - CP asymmetries depend on z=M₁/T (time variable)

$$\varepsilon_{1}(z) = \varepsilon_{1}^{(0)} \left[2\sin^{2} \left(\frac{(M_{2} - M_{1})z^{2}}{4H(M_{1})} \right) - \frac{\Gamma_{2}}{M_{2} - M_{1}} \sin \left(\frac{(M_{2} - M_{1})z^{2}}{2H(M_{1})} \right) \right]$$

- Effect is important if $1/\Delta M_{12} > 1/\Gamma_N \sim 1/H (T=M_1)$

Impact of memory effects

VC-DeSimone-Isidori-Masina-Riotto

"Memory" effects are controlled by condition

