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Inclusive |Vcb| and global fit
C. Schwanda
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A reliable determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb| is mandatory for precision

flavor physics and for the search for CP violating phases from new, heavy particles. In this article, we review

the theory of the determination of |Vcb| from inclusive semileptonic B decays. We discuss the available mea-

surements of the semileptonic B branching fraction and other inclusive observables in B decays relevant to the

determination of |Vcb|. Finally, we perform a global fit to extract |Vcb| and the b-quark mass mb.

1. Introduction

The magnitude of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element |Vcb| [1] can be determined
from semileptonic B decays to charmed final states.
At the B factory experiments Belle [2] and BaBar [3],
measurements of semileptonic decays to D or D∗

mesons (“exclusive measurements”) and determina-
tions of |Vcb| using all semileptonic final states in
a given region of phase space (“inclusive measure-
ments”) have been performed. In this article, we will
review the latter approach. As experimental and the-
oretical systematics are different, consistency between
exclusive and inclusive determinations of |Vcb| is cru-
cial for our understanding.

After reviewing the theory of the determination of
|Vcb| from inclusive B decays, we will discuss the mea-
surements (mainly at the B factories) of the semilep-
tonic branching fraction and other inclusive observ-
ables in B → Xcℓν decays that allow to determine the
non-perturbative parameters that appear in the calcu-
lation of the semileptonic width. Finally, we perform
fits to different data sets to determine |Vcb| and the
b-quark mass mb.

2. Calculations of the semileptonic
B decay width

The semileptonic decay width Γ(B → Xcℓν) is pro-
portional to |Vcb|

2. Measurements of the semileptonic
B branching fraction thus allow to determine |Vcb|,
provided that the width can be calculated reliably.
Challenges are non-perturbative QCD contributions
and experimental selections applied to the data. E.g.,
semileptonic decays can typically only be measured
above a certain minimum lepton energy threshold.

These calculations are performed in the frameworks
of the Heavy Quark Effective Theory (HQET) and the
Operator Production Expansion (OPE) [4, 7]. The re-
sult is an expansion in inverse powers of the b-quark
mass, the leading order corresponding to the result
obtained assuming unconfined quarks. A problem for
the practical use of these formulae is that new, so-
called heavy quark (HQ) parameter appear at each

Table I Heavy quark parameters in the expressions de-
rived in the kinetic and 1S schemes.

Kinetic scheme 1S scheme

O(1) mkin

b , mkin
c m1S

b

O(1/m2

b) µ2
π, µ2

G λ1, λ2

O(1/m3

b) ρ3

D, ρ3

LS ρ1, τ1, τ2, τ3

order in 1/mb. These non-perturbative quantities en-
code the soft QCD physics and cannot be calculated
from perturbation theory.

At present, there are two independent calculations
of the semileptonic width performed up to the third
order in 1/mb [4, 7]. Refering to the b-quark mass
definition used, the two schemes are called 1S and
kinetic. E.g., the result in the kinetic scheme reads [4],
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mb(µ)

m2
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ρ3

D(µ)

m3
b(µ)

+ . . .
]

, (1)

where GF is the Fermi constant, µ is the renormaliza-
tion scale, r = m2

c(µ)/m2
b(µ), and z0(r) and d(r) are

phase space factors [4]. Both the electroweak and the
perturbative corrections, Aew and Apert(r, µ), are well
known [4]. The remaining quantities are the above-
mentioned HQ parameters shown in Table I together
with their counterparts in the 1S scheme.

Although these HQ parameters cannot be deter-
mined theoretically, they can be obtained from exper-
iment: Other inclusive observables in B decays, such
as the moments of the lepton energy and the Xc mass
distributions in B → Xcℓν decays, and the moments
of the photon energy spectrum in B → Xsγ decays,
have a similar expansion in inverse powers of mb with
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the same HQ parameters. By measuring these quan-
tities in the experiment, one can determine the pa-
rameters in Table I and substitute them into Eq. 1 to
obtain |Vcb| with a precision of 1 − 2%. This type of
analysis is often refered to as global fit.

On the theory side, this approach requires calcu-
lations of the B → Xcℓν and B → Xsγ moments
with the same precision in 1/mb as in Eq. 1. In
the kinetic scheme, calculations of the lepton energy
and hadronic mass spectra up to O(1/m3

b) for differ-
ent truncations in the lepton energy are available [5].
Also, the moments of the photon energy spectrum in
B → Xsγ decays have been calculated [6]. Note that
the photon energy spectrum cannot be described by
the OPE alone but some modeling of additional non-
perturbative contributions is necessary. In Ref. [6]
these are refered to as bias corrections. Calculations
up to the same order in 1/mb are also available in the
1S scheme [7].

3. Measurements of B → Xcℓν decay
distributions

Measurements of the semileptonic B branching frac-
tion and inclusive observables in B → Xcℓν decays
have been obtained by the BaBar [8–10], Belle [11, 12],
CDF [13], CLEO [14] and DELPHI [15] experiments.
The photon energy spectrum in B → Xsγ decays has
been studied by BaBar [16, 17], Belle [18, 19] and
CLEO [20]. In this section, we will briefly review the
new or updated measurements of B → Xcℓν decays.

BaBar has updated their previous measurement of
the hadronic mass moments 〈M2n

X 〉 [9] and obtained
preliminary results based on a dataset of 210 fb−1

taken at the Υ(4S) resonance [10]. In the updated
analysis, the hadronic decay of one B meson in
Υ(4S) → BB̄ is fully reconstructed (Btag) and the
semileptonic decay of the second B is infered from the
presence of an identified lepton (e or µ) within the re-
maining particles in the event (Bsig). This so-called
full reconstruction tag allows to significantly reduce
combinatorial backgrounds and select semileptonic de-
cays with a purity of about 80%. Particles used nei-
ther for the reconstruction of Btag nor for the charged
lepton are considered to belong to the Xc system, and
the hadronic mass spectrum MX is calculated using
some kinematic constraints (Fig. 1).

From this spectrum, BaBar calculates the hadronic
mass moments 〈Mn

X〉, n = 1, . . . , 6 for minimum lep-
ton momenta in the center-of-mass (c.m.) frame rang-
ing from 0.8 to 1.9 GeV/c. These moments are how-
ever distorted by acceptance and finite resolution ef-
fects and an event-by-event correction is derived from
Monte Carlo (MC) simulated events. These correc-
tions are linear functions with coefficients depend-
ing on the lepton momentum, the multiplicity of the
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Figure 1: Hadronic mass spectra in BaBar’s recent anal-
ysis [10] for minimum c.m. lepton momenta of 0.8 GeV/c
(top) and 1.9 GeV/c (bottom). The residual backgrounds
are shown by the histograms.

Xc system and Emiss − c|~pmiss|, where Emiss and ~pmiss

are the missing energy and 3-momentum in the event.
Note that this analysis measures also mixed mass
and c.m. energy moments 〈N2n

X 〉, n = 1, 2, 3, with

NX = M2
Xc4 − 2Λ̃EX + Λ̃2 and Λ̃ = 0.65 GeV in

addition to ordinary hadronic mass moments. These
mixed moments are expected to better constrain some
HQ parameters though they are not used in current
global fit analyses yet.

Belle has recently measured the c.m. electron en-
ergy [11] and the hadronic mass [12] spectra in B →
Xcℓν decays, based on 140 fb−1 of Υ(4S) data. The
experimental procedure is very similar to the BaBar
analysis, i.e., one B meson in the event is fully re-
constructed in a hadronic channel (Fig. 2). The main
difference to the analysis discussed above is that de-
tector effects in the spectra are removed by unfolding
using the Singular Value Decomposition (SVD) algo-
rithm [21] with a detector response matrix found from
MC simulation. The moments are then calculated
from the unfolded spectra. In Ref. [11], Belle mea-
sures the partial semileptonic branching fraction and
the c.m. electron energy moments 〈En

e 〉, n = 1, . . . , 4,
for minimum c.m. electron energies ranging from 0.4
to 2.0 GeV. The hadronic mass analysis [12] measures
the first and second moments of M2

X for minimum
c.m. lepton energies between 0.7 and 1.9 GeV.

An interesting analysis of inclusive B → Xcℓν de-
cays comes also from the DELPHI experiment [15]: In
this study, the b-frame lepton energy 〈En

l 〉, n = 1, 2, 3,
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Figure 2: Electron energy spectrum in the c.m. frame for
charged (top) and neutral (bottom) tags, as measured in
Ref. [11].

and the hadronic mass M2n
X , n = 1, . . . , 5, moments

are measured without applying any selection on the
lepton energy in the b-frame. This is possible as DEL-
PHI studies b-decays in Z → bb̄ events. b-hadrons are
thus produced with significant kinetic energy in the
laboratory frame, so that charged leptons at rest in
the b-frame can be seen in the detector.

4. Global fit and determination of |Vcb|
inclusive

The different global fit analyses differ by the theory
expressions and the data sets they are based onto: As
discussed in Sect. 2, at present there are two sets of
theoretical expressions available for this analysis de-

Table II Experimental inputs used in the Belle |Vcb| inclu-
sive analysis [18].

Moments Measurements used

n = 0: Emin = 0.6, 1.0, 1.4 GeV

Lepton energy n = 1: Emin = 0.6, 0.8, 1.0, 1.2, 1.4 GeV

〈En
ℓ 〉 [11] n = 2: Emin = 0.6, 1.0, 1.4 GeV

n = 3: Emin = 0.8, 1.0, 1.2 GeV

Hadronic mass n = 1: Emin = 0.7, 1.1, 1.3, 1.5 GeV

〈M2n
X 〉 [12] n = 2: Emin = 0.7, 0.9, 1.3 GeV

Photon energy n = 1: Emin = 1.8, 2.0 GeV

〈En
γ 〉 [18] n = 2: Emin = 1.8, 2.0 GeV

Table III Results of the Belle |Vcb| analysis [18]. The re-
sults for mb are compatible after scheme translation.

Kinetic scheme 1S scheme

|Vcb| (10−3) 41.58 ± 0.69(fit) 41.56 ± 0.68(fit)

±0.08(τB) ± 0.58(th) ±0.8(τB)

mb (GeV) 4.543 ± 0.075 4.723 ± 0.055

χ2/ndf. 7.3/18 4.7/18

rived in the kinetic [4–6] and 1S schemes [7]. As for
the data sets, DELPHI [15], BaBar [10] and Belle [18]
have determined |Vcb| inclusive from their own data.
We will discuss the recently published Belle analysis
in more detail. Finally, to achieve the ultimate statis-
tical precision, we will combine all available data to
measure |Vcb| and the b-quark mass mb.

In Ref. [18], Belle uses 25 measurements of the lep-
ton energy and hadronic mass moments in B → Xcℓν
and of the photon energy moments in B → Xsγ
(Table II). Though more moment measurements are
available, moments without matching theoretical pre-
diction or highly correlated measurements are ex-
cluded. A χ2-fit of these measurements is done to
both the kinetic and 1S scheme expressions. The only
external input in the analysis is the average B lifetime
τB = (1.585 ± 0.006) ps [22].

There a 7 free parameters in both fits. Only |Vcb|
can be compared directly, while a scheme translation
must be performed for the HQ parameters, including
the b-quark mass mb. The main challenge is to prop-
erly account for correlations: the covariance matrix
of the χ2-fit is the sum of experimental and theoreti-
cal correlations. While the experimental correlation
coefficients have been determined in the respective
analyses [11, 12, 18], theoretical correlations are es-
timated following the prescriptions of the theoretical
authors [5–7]. The results of the Belle analysis are
given in Table III.
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Table IV Experimental inputs used for a global fit analysis
to all available moment data.

Experiment Measurements used

BaBar 〈En
ℓ , n = 0, 1, 2, 3 [8]

〈M2n
X 〉, n = 1, 2 [9]

〈En
γ 〉, n = 1, 2 [16, 17]

Belle 〈En
ℓ , n = 0, 1, 2, 3 [11]

〈M2n
X 〉, n = 1, 2 [12]

〈En
γ 〉, n = 1, 2 [19]

CDF 〈M2n
X 〉, n = 1, 2 [13]

CLEO 〈M2n
X 〉, n = 1, 2 [14]

〈En
γ 〉, n = 1 [20]

DELPHI 〈En
ℓ , n = 1, 2, 3 [15]

〈M2n
X 〉, n = 1, 2 [15]

Table V Preliminary results of the analysis combining all
available moment data (Table IV).

Kinetic scheme 1S scheme

|Vcb| (10−3) 41.55 ± 0.43(fit) 41.74 ± 0.29(fit)

±0.08(τB) ± 0.58(th) ±0.8(τB)

mb (GeV) 4.613 ± 0.033 4.708 ± 0.024

χ2/ndf. 30.6/63 26.1/63

Finally, we attempt to combine all available mo-
ment measurements to optimize the statistical pre-
cision in |Vcb| and mb. Using 70 measurements (Ta-
ble IV) from different experiments, we follow the Belle
approach to derive numbers in the kinetic and 1S
schemes. The preliminary results are shown in Ta-
ble V and Fig. 3.

5. Summary

We have reviewed the theory and surveyed the ex-
perimental data for the determination of the CKM
matrix element |Vcb| from inclusive decays B → Xcℓν.
The results for |Vcb| using the data of the Belle exper-
iment alone are given in Table III. Also, an attempt is
made to combine all available experimental data: The
preliminary results in terms of |Vcb| and the b-quark
mass mb are shown in Table V.
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