

Inclusive |V_{cb}| and global fits

Christoph Schwanda, HEPHY Vienna

June 5-9, 2008, Melbourne, Australia

The CKM matrix

Couplings of the charged current interaction in the SM

$$-\mathcal{L}_{W^{\pm}} = rac{g}{\sqrt{2}} \; \overline{u_{Li}} \; \gamma^{\mu} \; (V_{ ext{CKM}})_{ij} \; d_{Lj} \; W_{\mu}^{+} + ext{h.c.}$$
 $V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

V_{CKM} is a unitary 3x3 matrix;
 it contains three real parameters and one complex phase

[Kobayashi, Maskawa, Prog. Theor. Phys. 49, 652 (1973)]

 The unitarity of V_{CKM} can be probed by measuring the sides and angles of the unitarity triangle

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

 In this presentation, I'll focus on the determination of |V_{cb}| from inclusive semileptonic B decays

The semileptonic width

 Γ(B→X_cIv) can be systematically calculated with the operator production expansion (OPE)

$$\Gamma_{\rm sl}(b \to c) \; = \; \frac{G_F^2 \, m_b^5(\mu)}{192 \, \pi^3} \; \big| V_{cb} \big|^2 \; (1 + A_{\rm ew}) \; A^{\rm pert}(r,\mu) \\ \left[z_0(r) \left(1 - \underbrace{\mu_\pi^2(\mu) \cdot \mu_G^2(\mu) \cdot \mu_{b}^3(\mu)}_{2m_b^2(\mu)} \right) \right. \qquad \qquad \text{from [Benson et al., Nucl. Phys. B665, 367 (2003)]} \\ - \; \; 2(1 - r) \underbrace{\mu_G^2(\mu) \cdot \mu_{b}^3(\mu) \cdot \mu_{b}^3(\mu)}_{m_b^2(\mu)} + d(r) \underbrace{\mu_b^3(\mu)}_{m_b^3(\mu)} + \dots \right] \\ \cdots \; \quad HQ \; \text{parameters (non-calculable; contain soft QCD physics)}$$

 At each order in 1/m_b, the expectation values of local operator products (heavy quark parameters) are multiplied by perturbatively calculable coefficients

Other observables in B decays

• Moments of the lepton energy spectrum in B \rightarrow X_cIv

$$R_n(E_{\text{cut}}, \mu) = \int_{E_{\text{cut}}} \left(E_{\ell} - \mu \right)^n \frac{d\Gamma}{dE_{\ell}} dE_{\ell} , \quad \langle E_{\ell}^n \rangle_{E_{\text{cut}}} = \frac{R_n(E_{\text{cut}}, 0)}{R_0(E_{\text{cut}}, 0)}$$

• Moments of the hadronic mass spectrum in B \rightarrow X_cIv

$$\langle m_X^{2n} \rangle_{E_{\text{cut}}} = rac{\displaystyle \int_{E_{\text{cut}}} (m_X^2)^n rac{\mathrm{d}\Gamma}{\mathrm{d}m_X^2} \, \mathrm{d}m_X^2}{\displaystyle \int_{E_{\text{cut}}} rac{\mathrm{d}\Gamma}{\mathrm{d}m_X^2} \, \mathrm{d}m_X^2}$$

• Moments of the photon energy spectrum in B $\rightarrow X_s \gamma$

$$\langle E_{\gamma}^{n} \rangle_{E_{\text{cut}}} = \frac{\int_{E_{\text{cut}}} E_{\gamma}^{n} \frac{d\Gamma}{dE_{\gamma}} dE_{\gamma}}{\int_{E_{\text{cut}}} \frac{d\Gamma}{dE_{\gamma}} dE_{\gamma}}$$

The OPEs of these inclusive observables contain the same HQ parameters

Global analysis of B decays

Dedicated predictions for each observable

```
-\langle E^{n}_{l}\rangle_{El>Ecut} = f^{(n)}(E_{cut}, m_{b}, HQ param.)
-\langle M^{2n}_{X}\rangle_{El>Ecut} = g^{(n)}(E_{cut}, m_{b}, HQ param.)
-\langle E^{n}_{v}\rangle_{Ev>Ecut} = h^{(n)}(E_{cut}, m_{b}, HQ param.)
```

- Determine HQ parameters by performing a minimum χ^2 fit to all available moment measurements
- Take into account correlated experimental and theoretical errors
- External input: average B lifetime $\tau_B = (1.585 + -0.006)$ ps

Available calculations

- Kinetic running mass
 - [P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181 (2004)]
 - [D.Beson, I.Bigi, N.Uraltsev, Nucl. Phys. B710, 371 (2005)]

both calculations up to O(1/m³_b)

- 1S mass
 - [C.Bauer, Z.Ligeti, M.Luke, A.Manohar, M.Trott, Phys.Rev. D70, 094017 (2004)]
- Non-perturbative parameters in the 1/m_b expansion

	Kinetic scheme	1S scheme
O(1)	m _b , m _c	m_b
O(1/m ² _b)	μ_{π}^2 , μ_G^2	λ_1, λ_2
O(1/m ³ _b)	ρ_{D},ρ_{LS}	ρ_1, τ_{1-3}

Available measurements

- Belle E_ν, 605/fb [arXiv:0804.1580] preliminary
- BaBar E_I, M²_X, 210/fb [arXiv:0707.2670] preliminary
- Belle E_I, 140/fb [PRD 75, 032001 (2007)]
- Belle M²_X, 140/fb [PRD 75, 032005 (2007)]
- DELPHI E_I, M²_X, 3.4M Z [EPJ C45, 35 (2006)]
- BaBar, E_γ, 82/fb [PRL 97, 171803 (2006)]
- BaBar, E_v, 82/fb [PRD 72, 052004 (2005)]
- CDF, M²_X, 180/pb [PRD 71, 051103 (2005)]
- Belle, E_v, 140/fb [PRL 93, 061803 (2004)]
- CLEO, M²_X, 9/fb [PRD 70, 032002 (2004)]
- BaBar, E_I, 47/fb [PRD 69, 111104 (2004)]
- BaBar, M²_X, 89M BB [PRD 69, 111103 (2004)]
- CLEO, E_γ, 9/fb [PRL 87, 251807 (2001)]

BaBar M²_X moments

- 210/fb of Y(4S) data
- Hadronic decay of one B meson fully reconstructed
- Semileptonic decay of other B selected by requiring identified lepton (e/μ)
- Reconstructed moments corrected event-by-event for detector effects
- <M^k_X> measured for k=1,...,6 and p*_{cut} from 0.8 to 1.9 GeV/c

Belle E_I and M²_X moments

[PRD 75, 032001 (2007)] [PRD 75, 032005 (2007)]

- 140/fb of Y(4S) data
- Measurement also done with fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- <E_n > measured for n=0,...,4 and E_{cut}=0.4-2.0 GeV
- <M²ⁿ_X> measured for n=1,2 and E_{cut}=0.7-1.9 GeV

DELPHI E_I and M²_X moments [EPJ C45, 35 (2006)]

- $\langle E^n \rangle$, n=1,...,3 and $\langle M^{2n} \rangle$, n=1,...,5 measured at $E_{cut} = 0$ as in Z events the b-quark is produced with a boost
- The hadronic moments are derived from the fitted D** mass spectrum; assumptions on the D** decay are made

|V_{cb}| and m_b from the fit to the Belle moment data

[arXiv:0803.2158] submitted to Phys.Rev.D

Similar analysis recently done on the BaBar moment data [arXiv:0707.2670] preliminary

Belle measurements used

Electron moments	n=0: E _{cut} =0.6, 1.0, 1.4 GeV
<e<sub>1></e<sub>	n=1: E _{cut} =0.6, 0.8, 1.0, 1.2, 1.4 GeV n=2: E _{cut} =0.6, 1.0, 1.4 GeV
	n=2: E _{cut} =0.6, 1.0, 1.4 GeV
	n=3: E _{cut} =0.8, 1.0, 1.2 GeV
	n=1: E _{cut} =0.7, 1.1, 1.3, 1.5 GeV
<m<sup>2n_X></m<sup>	n=2: E _{cut} =0.7, 0.9, 1.3 GeV
Photon moments	n=1: E _{cut} =1.8, 2.0 GeV
< E ⁿ _γ >	n=2: E _{cut} =1.8, 2.0 GeV

- Exclude measurements
 - with no (reliable) theory prediction
 - with excessive correlations

Fit result in the 1S scheme

$$\chi^2$$
/ndf. = 7.3 / (25-7)

Fit result in the kinetic scheme

 χ^2 /ndf. = 4.7 / (25-7)

|V_{cb}| and m_b

Kinetic scheme ($X_c lv + X_s \gamma$ data)

$$|V_{cb}| = (41.52 \pm 0.69_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}) \times 10^{-3}$$

 $m_b^{kin} = 4.543 \pm 0.075 \text{ GeV}$
 $m_c^{kin} = 1.055 \pm 0.118 \text{ GeV}$

Results for m_b compatible after scheme translation

1S scheme ($X_c I_V + X_s \gamma$ data)

$$|V_{cb}| = (41.56 \pm 0.68_{fit} \pm 0.08_{\tau B}) \times 10^{-3}$$

 $m_b^{1S} = 4.723 \pm 0.055 \text{ GeV}$

|V_{cb}| and m_b from the fit to all available moment measurements

preliminary

Measurements used

BaBar	$\langle E^{n}_{l} \rangle$: n=0,1,2,3 [PRD 69, 111104 (2004)] $\langle M^{2n}_{\chi} \rangle$: n=1,2 [PRD 69, 111103 (2004)] $\langle E^{n}_{\gamma} \rangle$: n=1,2 [PRL 97, 171803 (2006)] and [PRD 72, 052004 (2005)]
Belle	$: n=0,1,2,3$ [PRD 75, 032001 (2007)] $: n=1,2$ [PRD 75, 032005 (2007)] $: n=1,2$ [arXiv:0804.1580] preliminary
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<m<sup>2n_χ>: n=1,2 [PRD 70, 032002 (2004)] <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>
DELPHI	<e<sub>1>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sub>

70 measurements in total

|V_{cb}| and m_b

Kinetic scheme ($X_c lv + X_s \gamma$ data)

 $|V_{cb}| = (41.55 \pm 0.43_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}) \times 10^{-3}$

 $m_b^{kin} = 4.613 \pm 0.033 \text{ GeV}$

 $m_c^{kin} = 1.178 \pm 0.049 \text{ GeV}$

 χ^2 /ndf. = 30.6 / (70-7)

preliminary

1S scheme $(X_c I_V + X_s \gamma \text{ data})$

 $|V_{cb}| = (41.74 \pm 0.29_{fit} \pm 0.08_{\tau B}) \times 10^{-3}$

 $m_b^{1S} = 4.708 \pm 0.024 \text{ GeV}$

 χ^2 /ndf. = 26.1 / (70-7)

Summary and conclusion

- Calculations based on heavy quark effective theory and operator product expansion can reproduce inclusive observables in B decays to a high degree of precision
- Results by experiment (kinetic scheme)

	V _{cb} (10 ⁻³)	m _b (GeV)
BaBar [arXiv:0707.2670]	$41.88 \pm 0.56_{\text{fit}} \pm 0.08_{\tau B} \pm 0.59_{\text{th}}$	4.552 ± 0.055
Belle [arXiv:0803.2158]	$41.52 \pm 0.69_{\text{fit}} \pm 0.08_{\tau B} \pm 0.58_{\text{th}}$	4.543 ± 0.075

Fits to all available measurements (preliminary)

	V _{cb} (10 ⁻³)
Kinetic scheme	$41.55\pm0.43_{\text{fit}}\pm0.08_{\tau B}\pm0.58_{\text{th}}$
1S scheme	41.74±0.29 _{fit} ±0.08 _{τΒ}