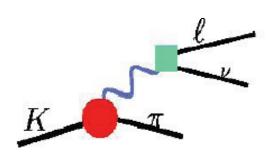
V_{us} determination from kaon decays

Paolo Massarotti

INFN Naple -Naples University "Federico II", Heavy Quarks and Leptons 08, Melbourne June 8 2008



The FlaviaNet Kaon working group

- The FlaviaNet Kaon WG (www.lnf.infn.it/wg/vus/). Recent kaon physics results come from many experimental (BNL-E869, KLOE, KTeV, ISTRA+, NA48) and theoretical (Lattice, χ_{PT} ,) improvements. The main purpose of this working group is to perform precision tests of the Standard Model and to determine with high accuracy fundamental couplings (such as V_{us}) using all existing (published and/or preliminary) data on kaon decays, taking correlations into account.
- WG preprinter: *Precision tests of the Standard Model with leptonic and semileptonic kaon decays*, arXiv:0801.1817 [hep-ph] 11 Jan 2008.
- For the talk only results mentioned in this note are used.

Physics results:

• $|V_{us}| \times f_+(0)$

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2$$

• $|V_{us}|/|V_{ud}| \times f_K/f_{\pi}$.

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2} \right)^2 \times (1 + \delta_{\rm em})$$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Physics results:

• $|V_{us}| \times f_+(0)$

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2$$

• $|V_{us}|/|V_{ud}| \times f_K/f_{\pi}$.

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2} \right)^2 \times (1 + \delta_{\rm em})$$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

K_L leading branching ratios and τ_L

18 input measurements:

5 KTeV ratios NA48 K_{e3} /2tr and $\Gamma(3\pi^0)$ 4 KLOE BRs KLOE, NA48 $\pi^+\pi^-/K_{l3}$ KLOE, NA48 $\gamma\gamma/3\pi^0$ PDG ETAFIT for $\pi^+\pi^-/\pi^0\pi^0$ KLOE τ_L from $3\pi^0$ Vosburgh '72 τ_L

Parameter	Value	S
$BR(K_{e3})$	0.4056(7)	1.1
$\mathrm{BR}(K_{\mu3})$	0.2705(7)	1.1
$\mathrm{BR}(3\pi^0)$	0.1951(9)	1.2
${\rm BR}(\pi^+\pi^-\pi^0)$	0.1254(6)	1.1
$BR(\pi^+\pi^-)$	$1.997(7) \times 10^{-3}$	1.1
$\mathrm{BR}(2\pi^0)$	$8.64(4) \times 10^{-4}$	1.3
$\mathrm{BR}(\gamma\gamma)$	$5.47(4) \times 10^{-4}$	1.1
$ au_L$	51.17(20) ns	1.1

8 free parameters, 1 constraint: $\Sigma BR=1$

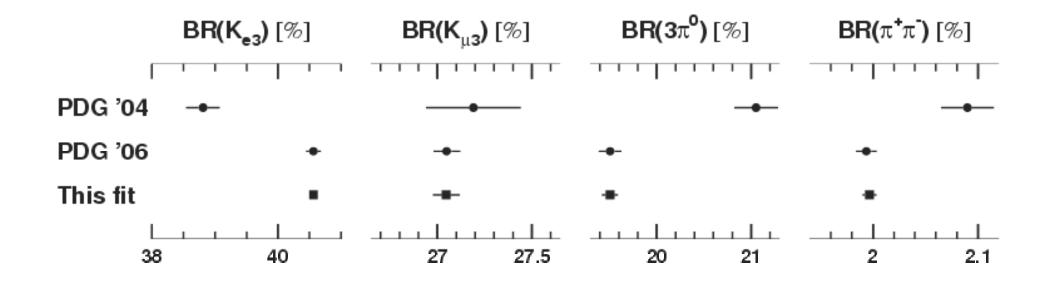
Main differences wrt PDG06:

- For KLOE and KTeV, use values obtained before applying constraints.
- Make use of preliminary BR($3\pi^0$) and new BR($\pi^+\pi^-$)/BR(Ke3) from NA48
- Fit parameter BR($\pi^+\pi^-$) is understood to be inclusive of the DE component.

Evolution of the average BR values

This fit $\chi^2/\text{ndf} = 20.2/11$ (4.3%); PDG06 fit: $\chi^2/\text{ndf} = 14.9/9$ (14.0%) Minor differences wrt PDG06:

- contrast between KLOE BR($3\pi^0$) and other inputs involving BR($2\pi^0$) and BR($3\pi^0$)
- treatment of the correlated KLOE and KTeV inputs: more uniform scale factors in this fit and significantly smaller uncertainty for BR(Ke3).



K_S leading branching ratios and τ_S

4 input measurements:

KLOE BR(Ke3)/BR($\pi^+\pi^-$)

KLOE BR($\pi^+\pi^-$)/BR($\pi^0\pi^0$)

Universal lepton coupling

NA48 BR(Ke3)

τ_S: non CPT-constrained fit value, dominated by 2002 NA48 and 2003 KTeV measurements

4 free parameters: $K_S\pi\pi$, $K_S\pi^0\pi^0$, K_Se3 , $K_S\mu3$, 1 constraint: $\Sigma BR=1$

- KLOE meas. completely determine the leading BR values.
- NA48 Ke3 input improve the BR(Ke3) accuracy of about 10%.
- BR(K_Se3)/BR(K_Le3) from NA48 not included (need of a K_L and K_S combined fit)
- Combined fit would be useful in properly account for preliminary NA48 $\Gamma(K_L \rightarrow 3\pi^0)$ and PDG ETAFIT, used in the K_L fit.

K^{\pm} leading branching ratios and τ^{\pm}

26 input measurements:

5 older τ values in PDG

2 KLOE τ

KLOE BR(μν)

KLOE Ke3, $K\mu3$, and $K\pi2$ BRs

ISTRA+ $K_{e3}/\pi \pi^0$

NA48/2 $K_{e3}/\pi \pi^0$, $K_{u3}/\pi \pi^0$

E865 K_{e3}/K dal

3 old $\pi\pi^0/\mu\nu$

2 old Ke3/2 body

3 *Kμ3/Ke3* (2 old)

2 old + 1 KLOE results on 3π

7 free parameters,

1 constraint: ΣBR=1

Parameter	Value	S
$\mathrm{BR}(K_{\mu2})$	63.57(11)%	1.1
${ m BR}(\pi\pi^0)$	20.64(8)%	1.1
$BR(\pi\pi\pi)$	5.595(31)%	1.0
$\mathrm{BR}(K_{e3})$	5.078(26)%	1.2
$\mathrm{BR}(K_{\mu3})$	3.365(27)%	1.7
$\mathrm{BR}(\pi\pi^0\pi^0)$	1.750(26)%	1.1
$ au_{\pm}$	12.384(19) ns	1.7

Don't use the 6 BR meas. from Chiang;

- no implementation of radiative corrections
- 6 BR constrained to sum to unit.
- the correlation matrix not available.

What about discard many other old meas.?

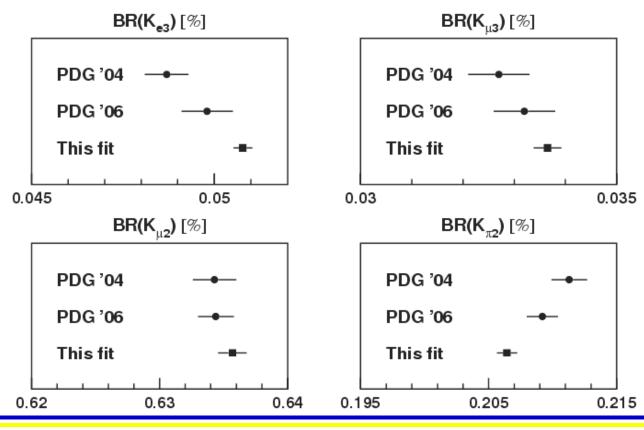
- no recent meas. involving BR($\pi\pi\pi$)
- fit instable if only recent are used.

Evolution of the average BR values

- This fit $\chi^2/\text{ndf} = 42/20 \ (0.31\%)$; PDG06 fit: $\chi^2/\text{ndf} = 30/19 \ (5.2\%)$
- If 5 older τ^{\pm} measurements replaced by PDG avg (with S=2.1), χ^2 / ndf = 24/16 (8.4%) with no significant changes to central values or errors.
- include many new results
- some conflict among newer meas. involving BR(Ke3): the pulls are +1.04,

-0.26, -0.73, and -2.13, for NA48, BNL-E865, ISTRA+, and KLOE respectively.

• Evolution of the BR($K_{\ell 3}$) and of the important normalization channels.



Physics results:

• $|V_{us}| \times f_+(0)$

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2$$

 $\bullet |V_{us}|/|V_{ud}| \times f_{K}/f_{\pi}$.

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2} \right)^2 \times (1 + \delta_{\rm em})$$

- •Global fits and averages:
- KL, KS, and K±, dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Parameterization of $K_{\ell3}$ form factors

• Hadronic K $\to \pi$ matrix element is described by two form factors $f_+(t)$ and $f_0(t)$

defined by:
$$\langle \pi^-(k) | \bar{s} \gamma^\mu u | K^0(p) \rangle = (p+k)^\mu f_+(t) + (p-k)^\mu f_-(t)$$

$$f_{-}(t) = \frac{m_K^2 - m_{\pi}^2}{t} \left(f_0(t) - f_{+}(t) \right)$$

- Experimental or theoretical inputs to define *t*-dependence of $f_{+,0}(t)$.
- $f_{-}(t)$ term negligible for K_{e3} .
- > Taylor expansion:

$$\tilde{f}_{+,0}(t) \equiv \frac{f_{+,0}(t)}{f_{+}(0)} = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 + \dots$$

 λ' and λ'' are strongly correlated: -95% for $f_+(t)$, and -99.96% for $f_0(t)$.

One parameter parameterizations:

➤ Pole parameterization

$$\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$$

 \triangleright Dispersive approach plus $K\pi$ scattering data for both $f_+(t)$ and $f_0(t)$

Vector form factor from K₂₃

Quadratic expansion:

- Measurements from ISTRA+, KLOE, KTeV, NA48 with K₁ e3 and K⁻e3 decays.
- Good fit quality: $\chi^2/\text{ndf}=5.3/6(51\%)$ for all data; $\chi^2/\text{ndf}=4.7/4(32\%)$ for K_L only
- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^\pm by 0.07%.
- Errors on I_{e3} are significantly smaller when K⁻ data are included.

A **pole parameterization** is in good agreement with present data:

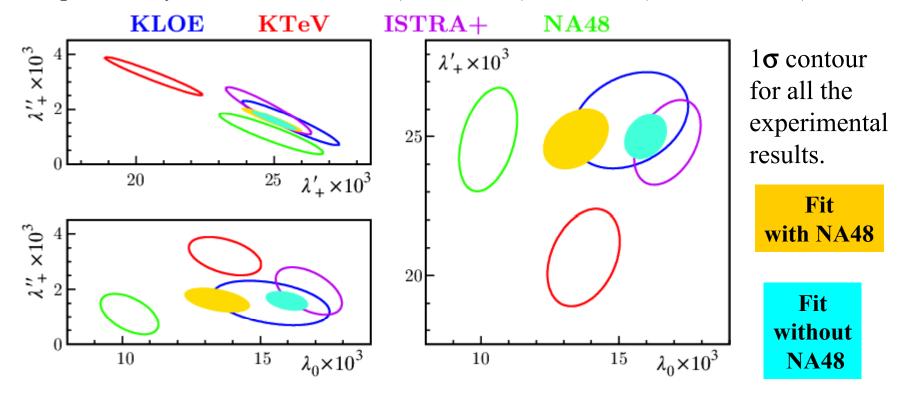
$$\tilde{f}_{+}(t) = M_V^2/(M_V^2 - t)$$
, with $M_V \sim 892$ MeV $\lambda' = (m_{\pi^+}/M_V)^2$; $\lambda'' = 2\lambda'^2$

- KLOE, KTeV, NA48 quote value for M_V for pole fit to K_L e3 data ($\chi^2/ndf=1.8/2$)
- The values for λ_{+}' and λ_{+}'' from pole expansion are in agreement with quadratic fit results.
- Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.

Improvements: dispersive parameterization for $f_{+}(t)$, with good analytical and unitarity properties and a correct threshold behavior, (e.g. Passemar arXiv:0709.1235[hep-ph]) Dispersive results for λ_{+} and λ_{0} are in agreement with pole parameterization.

Vector and scalar form factor from K₁₁₃

- λ_{+}' , λ_{+}'' and λ_{0} measured for Kµ3 from ISTRA+, KLOE, KTeV, and NA48.
- new NA48 results are difficult to accommodate in the $[\lambda_+', \lambda_+'', \lambda_0]$ space.
- Fit probability varies from 1×10^{-6} (with NA48) to 22.3% (without NA48).



- Because of correlation, is not possible measure λ_0'' at any plausible level of stat.
- Neglecting a quadratic term in the param. of scalar FF implies: $\lambda_0' \rightarrow \lambda_0' + 3.5 \lambda_0''$

Vector and scalar form factor from $K_{\beta\beta}$

• Slope parameters λ_{+}' , λ_{+}'' and λ_{0} from ISTRA+, KLOE, KTeV, and NA48.

	K_L and K^-	K_L only
Measurements	16	11
χ^2/ndf	$54/13 \ (7 \times 10^{-7})$	$33/8 \ (8 \times 10^{-5})$
$\lambda'_+ imes 10^3$	$24.9 \pm 1.1 \ (S = 1.4)$	$24.0 \pm 1.5 \ (S = 1.5)$
$\lambda_+^{\prime\prime} imes 10^3$	$1.6 \pm 0.5 \ (S = 1.3)$	$2.0 \pm 0.6 \ (S = 1.6)$
$\lambda_0 imes 10^3$	$13.4 \pm 1.2 \ (S = 1.9)$	$11.7 \pm 1.2 \ (S = 1.7)$
$\rho(\lambda'_+,\lambda''_+)$	-0.94	-0.97
$\rho(\lambda'_+,\lambda_0)$	+0.33	+0.72
$\rho(\lambda''_+,\lambda_0)$	-0.44	-0.70
$I(K_{e3}^{0})$	0.15457(29)	0.1544(4)
$I(K_{e3}^{\pm})$	0.15892(30)	0.1587(4)
$I(K_{\mu 3}^{0})$	0.10212(31)	0.1016(4)
$I(K_{\mu 3}^{\pm})$	0.10507(32)	0.1046(4)
$ ho(I_{e3},I_{\mu3})$	+0.63	+0.89

Space integral used for the $|V_{us}|f_+(0)$ determination

- Adding K μ 3 data to the fit doesn't cause significant changes to I_{e3}^0 and I_{e3}^{\pm} .
- NA48: $\Delta[I(K\mu3)] = 0.6\%$, but Ke3+K μ 3 average gives $\Delta[V_{\mu s}f_{+}(0)] = -0.08\%$.

Averages of

quadratic fit

Kµ3 slopes.

results for

Ke3 and

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Physics results:

- $|V_{us}| \times f_+(0)$
- $|V_{us}|/|V_{ud}| \times f_K/f_{\pi}$.
- Theoretical estimations of $f_{+}(0)$ and f_{K}/f_{π} .
- V_{us} and V_{ud} determinations.
- Bounds on helicity suppressed amplitudes.
- Test of lepton universality with Kℓ3

Determination of $|V_{us}| \times f_{+}(0)$

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{uS}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta_{SU(2)}^{K} + \delta_{em}^{K\ell})^{2}$$

with
$$K = K^+$$
, K^0 ; $\ell = e$, μ and $C_K^{-2} = 1/2$ for K^+ , 1 for K^0

Inputs from theory:

S_{EW} Universal short distance EW correction (1.0232)

$$\delta_{SU(2)}^{K}$$
 Form factor correction for strong SU(2) breaking

$$f_{+}^{K^0\pi^-}(0)$$
 Form factor at zero momentum transfer ($t=0$)

Inputs from experiment:

$$\Gamma(K_{l3(\gamma)})$$
 Branching ratios properly inclusive of radiative effects; lifetimes

 $I_{K\ell}(\lambda)$ Phase space integral: λ 's parameterize form factor dependence on t:

$$K_{e3}$$
: only λ_{+}
 $K_{\mu3}$: need λ_{+} and λ_{0}

Callan-Treiman

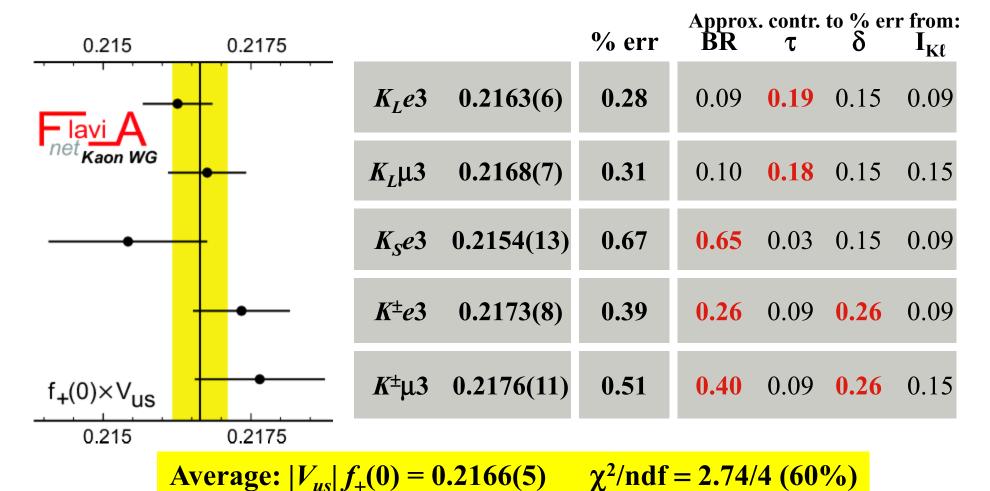
SU(2) and em corrections

(values used to extract $|V_{us}|f_{+}(0)$)

- δ_{em} for full phase space: all measurements assumed fully inclusive.
- Different estimates of δ_{em} agree within the quoted errors.
- Available correlation matrix between different corrections.
- V. Cirigliano *et al.* hep-ph/0406006;
- V. Cirigliano, M. Gianotti, and H. Neufeld, work in preparation.

Determination of $|V_{us}| \times f_{+}(0)$

$$\Gamma(K_{l3(\gamma)}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{EW} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}(\lambda_{+,0}) (1 + \delta_{SU(2)}^K + \delta_{em}^{K\ell})^2$$



SU(2) and em corrections

	$\delta^{\mathrm{K}}_{SU(2)}(\%)$	$\delta^{\mathrm{K}\ell}_{em}(\%)$,	
K^0e3	0	+0.57(15)	$\int 1.0 \ 0.1 \ 0.8$	-0.1
$K^0\mu 3$	0	+0.80(15)	1.0 - 0.1	0.8
K+e3	+2.36(22)%	+0.08(15)	1.0	0.1
<i>K</i> +μ3	+2.36(22)%	+0.05(15)		$1.0 \int$

(values used to extract $|V_{us}|f_+(0)$)

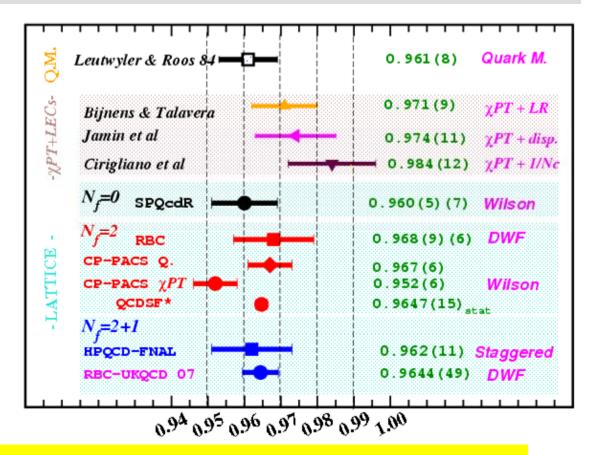
• Comparing values obtained for K_L and K^{\pm} (without $\delta^K_{SU(2)}$ correction) allows the empirical evaluation of SU(2) breaking correction: 2.81(38)%. To be compared with χ_{PT} prediction 2.36(22)%. Recent analyses point to ~3%.

Theoretical estimate of $f_{\perp}(0)$

$$\Gamma(K_{l3(\gamma)}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{EW} |V_{us}|^2 |f_+^{K^0\pi^-}(0)|^2 I_{K\ell}(\lambda_{+,0}) (1 + \delta^K_{SU(2)} + \delta^{K\ell}_{em})^2$$

Leutwyler & Roos estimate still widely used: $f_{+}(0) = 0.961(8)$.

Lattice evaluations generally agree well with this value; use RBC-UKQCD07 value: $f_{+}(0) = 0.9644(49) (0.5\%)$ accuracy, total err.).



K13:
$$|V_{us}| f_{+}(0) = 0.2166(5)$$
 and $f_{+}(0) = 0.964(5)$, obtain $|V_{us}| = 0.2246(12)$

V_{us}/V_{ud} determination from BR(K_{u2})

$$\frac{\Gamma(K_{\mu 2(\gamma)})}{\Gamma(\pi_{\mu 2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_K}{f_{\pi}} \times \frac{M_K (1-m_{\mu}^2/M_K^2)^2}{m_{\pi}(1-m_{\mu}^2/m_{\pi}^2)^2} \times (1+\alpha(C_K-C_{\pi}))$$

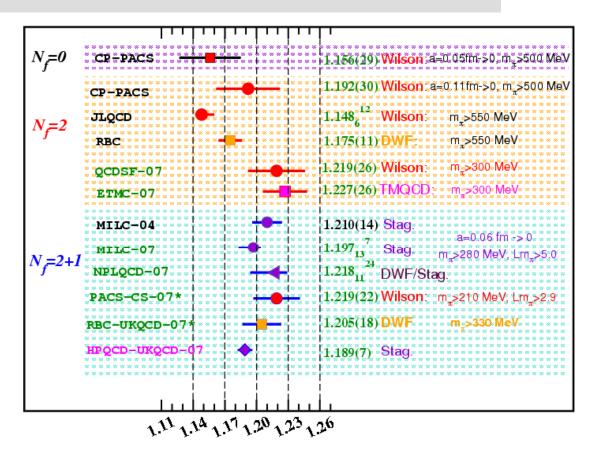
Inputs from experiment:

 $\Gamma(\pi, K_{l2(\gamma)})$ BR properly inclusive of radiative effects; lifetimes

Inputs from theory:

 $C_{K,\pi}$ Rad. inclusive EW corr. $f_{\rm K}/f_{\pi}$ Not protected by the Ademollo-Gatto theorem: only lattice.

- Lattice calculation of $f_{\rm K}/f_{\pi}$ and radiative corrections benefit of cancellations.
- Use HPQCD-UKQCD07 value: $f_{\rm K}/f_{\pi} = 1.189(7)$.



K12: $|V_{us}|/|V_{ud}| f_K/f_{\pi} = 0.2760(6)$ and $f_K/f_{\pi} = 1.189(7)$, obtain $|V_{us}|/|V_{ud}| = 0.2321(15)$

Dispersive parameterization: a test of lattice calculations

Scalar form factor $f_0(t) = \widetilde{f_0}(t) f_+(0)$ extrapolation at **Callan-Treiman** point:

$$\tilde{f}_0(\Delta_{K\pi}) = \frac{f_K}{f_\pi} \frac{1}{f(0)} + \Delta_{CT}, \quad \Delta_{CT} \simeq -3.4 \times 10^{-3}$$

• links $f_{+}(0)$ and f_{K}/f_{π} with λ_{0} measured in K μ 3 decays.

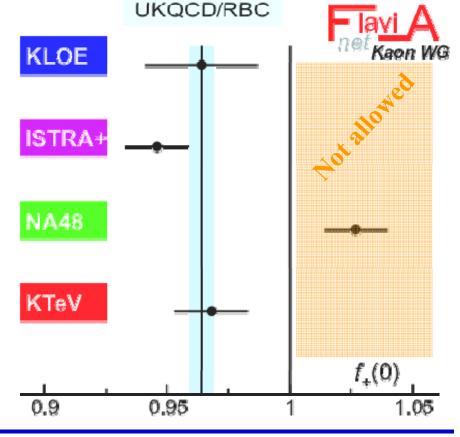
 $f_0(\Delta_{K\pi})$ is evaluated fitting $K_L \mu 3$ with a dispersive parameterization

$$\tilde{f}_0(t) = \exp\left(\frac{t}{\Delta_{K\pi}}\log(C - G(t))\right)$$

G(t) from $K\pi$ scattering data. To fit we use a 3rd order expansion

From CT, using $f_K/f_{\pi}=1.189(7)$ [HPQCD-UKQCD07| obtain: $f_{+}(0)=0.964(23)$ in agreement with RBC/UKQCD07 value:

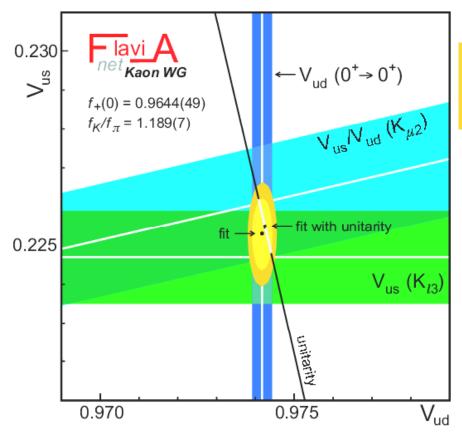
$$f_{+}(0) = 0.9644(49).$$



$V_{\rm ud}, V_{\rm us}$ and $V_{\rm us}/V_{\rm ud}$

 $|V_{us}| = 0.2246(12), |V_{us}|/|V_{ud}| = 0.2321(15)$

 V_{ud} from nuclear β decay: $V_{ud} = 0.97418(26)$ [Hardy-Towner, nucl-th 0710.3181]



Fit (with CKM unitarity constraint):

Fit (no CKM unitarity constraint):

$$V_{ud} = 0.97417(26); V_{us} = 0.2253(9)$$

 $\chi^2/\text{ndf} = 0.65/1 (41\%)$

- Unitarity: $1-V_{ud}^2-V_{us}^2=0.0002(6)$
- The test on the unitarity of CKM can be also interpreted as a test of the universality of lepton and quark gauge coupling:

$$G_{\text{CKM}} \equiv G_{\mu} \left[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \right]^{1/2}$$

= $(1.1662 \pm 0.0004) \times 10^{-5} \text{ GeV}^{-2}$

$$G_{\mu} = (1.166371 \pm 0.000007) \times 10^{-5} \text{ GeV}^{-2}$$

$$V_{us} = 0.2255(7) \chi^2/ndf = 0.8/2 (67\%)$$

K_{112} : sensitivity to NP

Comparison of V_{us} from $K_{\ell 2}$ (helicity suppressed) and from $K_{\ell 3}$ (helicity allowed) To reduce theoretical uncertainties study the quantity:

$$R_{l23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right|$$

Within SM $R_{123} = 1$; NP effects can show as scalar currents due to a charged Higgs:

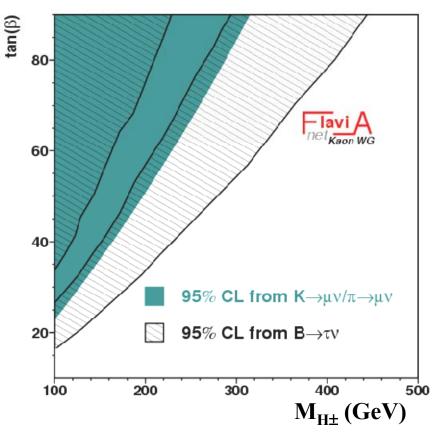
$$R_{l23} = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

K_{u2} : sensitivity to NP!

 $R_{\ell 23}$ is accessible via $BR(K_{\mu 2})/BR(\pi_{\mu 2})$, $V_{us}f_{+}(0)$, and V_{ud} , and $f_K/f_{\pi}/f_{+}(0)$ determinations.

• Using K[±] fit results, assuming unitarity for Vus(K_{f3}) and using $f_{K}/f_{\pi}/f_{+}(0)$ from lattice: $R_{123} = 1.004(7)$

- Uncertainty dominated by $f_{\mathbf{K}}/f_{\pi}/f_{+}(0)$.
- 95% CL excluded region (with ε_0 ~0.01).
- In $\tan \beta$ -M_{H+} plane, R_{f23} fully cover the region uncovered by BR($B\rightarrow \tau \nu$).



Test of Lepton Universality from K\lambda3

• Test of Lepton Flavor Universality: comparing Ke3 and Kµ3 modes constraints possible anomalous LF dependence in the leading weak vector current. Evaluate R_{Kµ3/Ke3}:

$$\frac{\Gamma(K_{\mu 3})}{\Gamma(K_{e 3})} = \left(\frac{G_F^{\mu}}{G_F^{e}}\right)^2 \frac{I_K^{\mu}}{I_K^{e}} \frac{(1 + \delta_K^{\mu})^2}{(1 + \delta_K^{e})^2}$$

Compare experimental results with SM prevision:

$$\mathbf{r}_{\mu \mathbf{e}} = \frac{(R_{K\mu 3/Ke3})_{\text{obs}}}{(R_{K\mu 3/Ke3})_{\text{SM}}} = \frac{\Gamma(K_{\mu 3})}{\Gamma(K_{e3})} \frac{I_K^e}{I_K^\mu} \frac{(1 + \delta_K^e)^2}{(1 + \delta_K^\mu)^2} = \left(\frac{\mathbf{G}_F^\mu}{\mathbf{G}_F^e}\right)^2$$

Using FlaviaNet results get accuracy ~0.5%,

$$K_{L} r_{\mu e} = 1.0049(61)$$

 $K^{\pm} r_{\mu e} = 1.0029(86)$
Average $r_{\mu e} = 1.0043(52)$

Comparable with other determinations:

•
$$\tau$$
 decays: $(r_{ue})_{\tau} = 1.0005(41)$ (PDG06)

•
$$\pi$$
 decays: $(r_{\mu e})_{\pi} = 1.0042(33)$

Conclusions

- Dominant K_S , K_L , and K^{\pm} BRs, and lifetime known with very good accuracy.
- Dispersive approach for form factors.
- Constant improvements from lattice calculations of $f_{+}(0)$ and f_{K}/f_{π} : Callan-Treiman relation allows checks from measurements; syst errors often not quoted, problem when averaging different evaluations.
- $|V_{us}| f_{+}(0)$ at 0.2% level.
- $|V_{us}|$ measured with 0.4% accuracy (with $f_{+}(0) = 0.9644(49)$) Dominant contribution to uncertainty on $|V_{us}|$ still from $f_{+}(0)$. CKM unitarity test satisfied at 0.3σ level test of lepton-quark universality
- Comparing $|V_{us}|$ values from Kµ2 and Kl3, exclude large region in the $(m_{H+}, \tan \beta)$ plane, complementary to results from $B \rightarrow \tau \nu$ decays.
- •Test of Lepton Universality with K13 decays with 0.5% accuracy.

Additional information

Introduction

Analysis of leptonic and semileptonic kaon decays data

- provide precise determination of **fundamental SM couplings**;
- set stringent SM tests, almost free from hadronic uncertainties;
- discriminate between **different NP scenarios**.

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2
\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2}\right)^2 \times (1 + \delta_{\text{em}})$$

• Test unitarity of the quark mixing matrix (V_{CKM}) :

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \epsilon_{NP}$$
 $\epsilon_{NP} \sim M_W^2 / \Lambda_{NP}^2$

- \rightarrow present precision on V_{us} (dominant source of error) and V_{uh} negligible $(|V_{ub}|^2 \sim 10^{-5})$ set bounds on NP well above 1 TeV.
- Comparison of Ke3 and Kµ3 modes, tests the **lepton universality**.

K^{\pm} leading branching ratios and τ_{+}

No significant differences in the fit if the final KLOE measurement of K[±] lifetime is used instead of the preliminary one (FlaviaNet note):

]	FlaviaNet note		$\tau^{\pm}(\text{KLOE}) = 12.34/(30) \text{ ns}$
Parameter	Value	S	
$\mathrm{BR}(K_{\mu2})$	63.57(11)%	1.1	
$\mathrm{BR}(\pi\pi^0)$	20.64(8)%	1.1	
$BR(\pi\pi\pi)$	5.595(31)%	1.0	← 5.593(30)%
$BR(K_{e3})$	5.078(26)%	1.2	
$\mathrm{BR}(K_{\mu3})$	3.365(27)%	1.7	
$\mathrm{BR}(\pi\pi^0\pi^0)$	1.750(26)%	1.1	$\leftarrow 1.749(26)\%$
$ au_{\pm}$	12.384(19) ns	1.7	$\leftarrow 12.379(19) \text{ ns}$

Global fits and averages:

- K_L , K_S , and K^{\pm} , dominant BRs and lifetime.
- Parameterization of the $K \rightarrow \pi$ interaction (form factor)

Physics results:

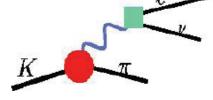
- $\bullet |V_{us}| \times f_{+}(0)$
- Test of lepton universality with $K_{\ell 3}$.
- $|V_{us}|/|V_{ud}| \times f_{K}/f_{\pi}$.
- Theoretical estimations of $f_{+}(0)$ and f_{K}/f_{π} .
- V_{us} and V_{ud} determinations.
- Bounds on helicity suppressed amplitudes.
- The special role of BR($K^{\pm}e^{2}$)/BR($K^{\pm}\mu^{2}$)

Parameterization of $K_{\ell 3}$ form factors

• Hadronic K $\to \pi$ matrix element is described by two form factors $f_+(t)$ and $f_0(t)$

defined by:
$$\langle \pi^{-}(k) | \bar{s} \gamma^{\mu} u | K^{0}(p) \rangle = (p+k)^{\mu} f_{+}(t) + (p-k)^{\mu} f_{-}(t)$$

$$f_{-}(t) = \frac{m_K^2 - m_\pi^2}{t} \left(f_0(t) - f_+(t) \right)$$



- Experimental or theoretical inputs to define *t*-dependence of $f_{+,0}(t)$.
- $f_{-}(t)$ term negligible for K_{e3} .

• Taylor expansion:
$$\tilde{f}_{+,0}(t) \equiv \frac{f_{+,0}(t)}{f_{+}(0)} = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 + \dots$$

- Obtain λ' , λ'' , from fit to data distributions (more accurate than theor. predictions).
- λ' and λ'' are strongly correlated: -95% for $f_+(t)$, and -99.96% for $f_0(t)$.

One parameter parameterizations:

 Pole parameterization (what vector/scalar state should be used?)

$$\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$$

• Dispersive approach plus $K\pi$ scattering data for both $f_+(t)$ and $f_0(t)$

Vector form factor

Quadratic expansion:

- Measurements from ISTRA+, KLOE, KTeV, NA48 with K₁ e3 and K⁻e3 decays.
- Good fit quality: $\chi^2/\text{ndf}=5.3/6(51\%)$ for all data; $\chi^2/\text{ndf}=4.7/4(32\%)$ for K_L only
- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^\pm by 0.07%.
- Errors on I_{e3} are significantly smaller when K⁻ data are included.

A **pole parameterization** is in good agreement with present data:

$$\tilde{f}_{+}(t) = M_V^2/(M_V^2 - t)$$
, with $M_V \sim 892$ MeV $\lambda' = (m_{\pi^+}/M_V)^2$; $\lambda'' = 2\lambda'^2$

- KLOE, KTeV, NA48 quote value for M_V for pole fit to K_L e3 data ($\chi^2/ndf=1.8/2$)
- The values for λ_+ ' and λ_+ '' from pole expansion are in agreement with quadratic fit results.
- Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.

Improvements: dispersive parameterization for $f_{+}(t)$, with good analytical and unitarity properties and a correct threshold behavior, (e.g. Passemar arXiv:0709.1235[hep-ph]) Dispersive results for λ_{+} and λ_{0} are in agreement with pole parameterization.

Dispersive parameterization

$$\begin{split} \tilde{f}_{+}(t) &= \exp\left[\frac{t}{m_{\pi}^{2}} \left(\Lambda_{+} + H(t)\right)\right] \\ \tilde{f}_{+}(t) &= 1 + \lambda_{+} \frac{t}{m^{2}} + \frac{\lambda_{+}^{2} + p_{2}}{2} \left(\frac{t}{m^{2}}\right)^{2} + \frac{\lambda_{+}^{3} + 3p_{2}\lambda_{+} + p_{3}}{6} \left(\frac{t}{m^{2}}\right)^{3} \end{split}$$

p_n	$\tilde{f}_{+}(t)$	$ ilde{f}_0(t)$
$p_2 \times 10^4$	5.84 ± 0.93	4.16 ± 0.50
$p_3 \times 10^4$	0.30 ± 0.02	0.27 ± 0.01

Table 1: Constants appearing in the dispersive form of vector and scalar form factors.

$$\tilde{f}_0(t) = \exp\left[\frac{t}{\Delta_{K\pi}}(\ln C - G(t))\right]$$

$$\tilde{f}_0(t) = 1 + \lambda_0 \frac{t}{m^2} + \frac{\lambda_0^2 + p_2}{2} \left(\frac{t}{m^2}\right)^2 + \frac{\lambda_0^3 + 3p_2\lambda_0 + p_3}{6} \left(\frac{t}{m^2}\right)^3$$

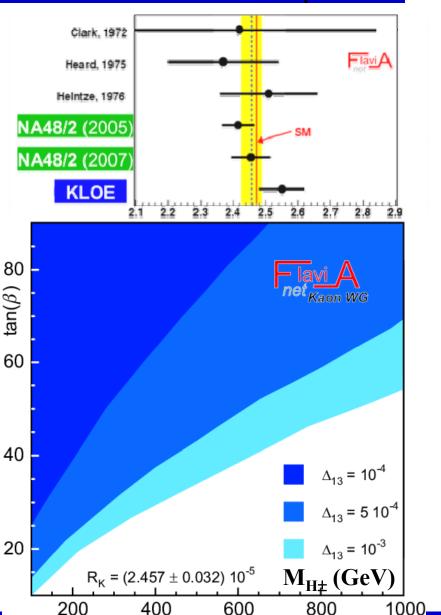
With or without NA48 Kµ3 data

			_		
	K_L and K^-	K_L only		K_L and K^-	K_L only
Measurements	16	11		13	8
χ^2/ndf	$54/13 \ (7 \times 10^{-7})$	$33/8 \ (8 \times 10^{-5})$		13/9 (24.9%)	9/5 (12.3%)
$\lambda'_+ \times 10^3$	$24.9 \pm 1.1 \ (S = 1.4)$	$24.0 \pm 1.5 \ (S = 1.5)$		25.0 ± 0.8	24.5 ± 1.1
$\lambda_+^{\prime\prime} \times 10^3$	$1.6 \pm 0.5 \ (S = 1.3)$	$2.0 \pm 0.6 \ (S = 1.6)$		1.6 ± 0.4	1.8 ± 0.4
$\lambda_0 \times 10^3$	$13.4 \pm 1.2 \ (S = 1.9)$	$11.7 \pm 1.2 \ (S = 1.7)$		16.0 ± 0.8	14.8 ± 1.1
$\rho(\lambda'_+, \lambda''_+)$	-0.94	-0.97		-0.94	-0.95
$\rho(\lambda'_+, \lambda_0)$	+0.33	+0.72		+0.26	+0.28
$\rho(\lambda''_+, \lambda_0)$	-0.44	-0.70		-0.37	-0.38
$I(K_{e3}^{0})$	0.15457(29)	0.1544(4)		0.15459(20)	0.15446(27)
$I(K_{e3}^{\pm})$	0.15892(30)	0.1587(4)		0.15894(21)	0.15881(28)
$I(K_{\mu 3}^{0})$	0.10212(31)	0.1016(4)		0.10268(20)	0.10236(28)
$I(K_{\mu 3}^{\pm})$	0.10507(32)	0.1046(4)		0.10559(20)	0.10532(29)
$\rho(I_{e3}, I_{\mu 3})$	+0.63	+0.89		+0.59	+0.62

```
-0.00006 (0.04\%) \Delta I(K^0e3)
wNA48-w/oNA48: -0.00002 (0.01%)
                      -0.00002 (0.01%)
                                             -0.00011 (0.07\%) \Delta I(K^{\pm}e3)
                      -0.00056 (0.55%)
                                             -0.00076 (0.75\%) \Delta I(K^0 \mu 3)
                      -0.00052 (0.49%)
                                             -0.00072 (0.69\%) \Delta I(K^{\pm}\mu 3)
```

Measurement of $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$

- PDG06: 5% precision from 3 old mnts
- 2 preliminary meas. from NA48 (see M.Raggi talk); waiting for new data result.
- 1 preliminary from KLOE see (A.Passeri talk); waiting for final.
- New average: $R_K = 2.457(32) \times 10^{-5}$.
- Perfect agreement with SM expectations: $R_K^{SM}=2.477(1)\times10^{-5}$.
- In SUSY(MSSM) LFV appear at 1-loop level (effective $H^+\ell\nu_\tau$ Yukawa interaction). For moderately large $\tan\beta$ values, enhance R_K up to few %.
- The world average gives strong constrains for $tan\beta$ and $M_{H\pm}$.
- 95%-CL excluded regions in the tan β M_H plane, for $\Delta_{13} = 10^{-4}$, 0.5×10^{-4} , 10^{-3} .



Lepton universality from $K_{e2}/K_{\mu 2}$

SM: no hadronic uncertainties (no f_{κ}) $\rightarrow 0.4 \times 10^{-3}$

In MSSM, LFV can give up to % deviations

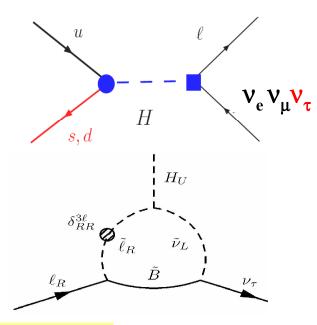
[Masiero, Paradisi, Petronzio]

NP dominated by contribution of ev,

$$R_{K}^{\approx} \frac{\Gamma(K \rightarrow e \nu_{e}) + \Gamma(K \rightarrow e \nu_{\tau})}{\Gamma(K \rightarrow \mu \nu_{\mu})}$$

with effective coupling:

$$eH^{\pm}
u_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} an^2 eta$$





$$R_{K} \approx R_{K}^{SM} \left[1 + \frac{m_{K}^{4}}{m_{H}^{4}} \frac{m_{\tau}^{2}}{m_{e}^{2}} |\Delta^{R}_{31}|^{2} \tan^{6}\beta \right]$$

1% effect ($\Delta^{R}_{31} \sim 5 \times 10^{-4}$, tan $\beta \sim 40$, $m_{H} \sim 500 \,\text{GeV}$) not unnatural

Present accuracy on R @ 6%; need for precise (<1%) measurements

Vector form factor from K_{e3}

• Quadratic from ISTRA+, KLOE, KTeV, NA48 with K_L and K⁻ decays.

	K_L and K^- data	K_L data only
	4 measurements	3 measurements
	$\chi^2/\text{ndf} = 5.3/6 \ (51\%)$	$\chi^2/\text{ndf} = 4.7/4 \ (32\%)$
$\lambda'_+ \times 10^3$	25.2 ± 0.9	24.9 ± 1.1
$\lambda'_{+} \times 10^{3}$ $\lambda''_{+} \times 10^{3}$	1.6 ± 0.4	1.6 ± 0.5
$\rho(\lambda'_+, \lambda +'')$	-0.94	-0.95
$I(K_{e3}^{0})$	0.15465(24)	0.15456(31)
$I(K_{e3}^{\pm})$	0.15901(24)	0.15891(32)

- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^{\pm} by 0.07%.
- \bullet Errors on I_{e3} are significantly smaller when K^- data are included.

Vector form factor from K_{e3}

• KLOE, KTeV, NA48 quote value for M_V for pole fit to K_L e3 data.

Experiment	$M_V \; ({ m MeV})$	$\langle M_V \rangle = 875 \pm 5 \text{ MeV}$
KLOE	$870 \pm 6 \pm 7$	$\chi^2/\text{ndf} = 1.8/2$
KTeV	881.03 ± 7.11	$\lambda'_{+} \times 10^{3} = 25.42(31)$
NA48	859 ± 18	$\lambda_{+}^{"}=2\times\lambda_{+}^{'2}$
		$I(K_{e3}^0) = 0.15470(19)$

- The values for λ_{+} 'and λ_{+} " from pole expansion are in agreement with quadratic fit results.
- Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.