

Debbie Bard Imperial College London

representing the BaBar collaboration Heavy Quarks and Leptons University of Melbourne, 5th - 9th June 2008

> Imperial College London

Overview

- Introduction and motivation.
- $b \rightarrow s\gamma$ results:
 - Branching fraction.
 - Photon energy spectrum.
 - CP asymmetries.
- b \rightarrow d γ results:
 - Exclusive branching fractions.
 - CP asymmetries.
 - Inclusive branching fraction.

Radiative penguin decays

- Flavour changing neutral currents (FCNC) do not occur at tree level in the standard model (SM)
 - procede via one loop or higher order processes.
- SM dominated by top quark contribution.
- New physics (NP) can appear in the loop with size comparable to leading SM contributions.

- Studies of FCNC very active at B-factories:
 - I will cover recent results from both $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ in inclusive and exclusive analyses.

Observables

• Branching fraction (BF): NNLO calculation for $b \rightarrow s\gamma$:

Misiak et. al: BF(b \rightarrow s γ) = (3.15 ± 0.23)x10⁻⁴ [Phys. Rev. Lett. 98 022002]. Becher et. al: BF(b \rightarrow s γ) = (2.98 ± 0.26)x10⁻⁴ [Phys. Rev. Lett. 98 022003].

- $b \rightarrow d\gamma$ SM rate is CKM suppressed w.r.t. $b \rightarrow s\gamma$ by factor ~20.
- Use ratio of BFs to constrain SM via $|V_{td}/V_{ts}|$, e.g. for exclusive modes: $BF(B \rightarrow \rho\gamma) = |V_{td}|^2 (1 - m_{e}^2 / m_{p}^2)^3$

$$\frac{BF(B \to \rho\gamma)}{BF(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right| \frac{(1 - m_{\rho}^2 / m_B^2)^*}{(1 - m_{K^*}^2 / m_B^2)^3} \xi^2 [1 + \Delta R]$$

 ξ ratio of the form factors for $B \to \rho \gamma$ and $B \to K^* \gamma$ ΔR differences in decay dynamics

 $|V_{td}/V_{ts}|$ also obtained from the ratio of B_d and B_s mixing frequencies, but new physics affects them in different ways.

Observables

- Photon energy (E_{γ}) distribution depends on mass (m_{b}) and fermi motion (μ_{π}) of b quark – can be used to reduce model dependent error on $|V_{ub}|$ and $|V_{cb}|$.
- CP asymmetry A_{cp} <1% (SM). NP effects can enhance this to 15% [Hurth, Lunghi & Porod, Nucl. Phys. B704, 56].
- Isospin asymmetry $\Delta_{0-} B^0 B^+$ partial rate asymmetry up to 10% in SM [Kagan & Neubert, Phys. Lett. B539, 227].
- Experimental quantities:

•
$$m_{ES} \equiv M_{cb} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$
, $\Delta E = E_B^* - E_{beam}^*$

Analysis methods

 $b \rightarrow s \gamma$

- B recoil
 - Fully reconstruct one B
 - Measure photon from other B
- Inclusive
 - Reconstruct only the photon
 - Reduce background with lepton tag
- Semi-inclusive
 - Reconstruct many exclusive final states
- Exclusive
 - reconstruct one final hadronic state

results not presented here

 $b \rightarrow s \gamma, b \rightarrow d \gamma$

 $b \rightarrow s \gamma^{*}, b \rightarrow d \gamma$

[BaBar, Phys.Rev.D77:051103,2008, 210fb⁻¹]

$B \rightarrow X_s \gamma$: B recoil method

- Fully reconstruct 'tagged' B in >1000 hadronic modes.
- Signal B from one high-energy photon, plus all non-tag tracks and neutrals.
- Photon spectrum can be measured in signal B rest frame
- Efficiency ~0.3% but excellent signal/background.

[BaBar, Phys.Rev.D77:051103,2008, 210fb⁻¹]

• Extract BF, A_{CP} , Δ_{0} , from E > 1.9 GeV region.

BF(B \rightarrow X_g γ) = (3.65 ± 0.85(*stat.*) ± 0.60(*syst.*)) x10⁻⁴ (E_g>1.9GeV, $b \rightarrow d\gamma$ subtracted) $BF(B \rightarrow X_{\gamma}) = (3.91 \pm 1.11) \times 10^{-4} (E_{\gamma} > 1.6 GeV)$

 $A_{CP} = 0.10 \pm 0.18(stat.) \pm 0.05(syst.)$ $(E_{v} > 2.2 GeV)$

(untagged asymmetries: $b \rightarrow (s,d)\gamma$

• Moments of photon spectrum:

$$m_{b}^{2} = 4.46_{-0.23}^{+0.21} \, GeV$$
$$\mu_{\pi}^{2} = 0.64_{-0.38}^{+0.39} \, GeV^{2}$$

• Method is statistics limited

[Belle, arXiv:0803.2158 (hep-ex) 605fb⁻¹]

- **b** \rightarrow **s** γ : Inclusive method
- First analysis to measure down to $E_{\gamma} > 1.7 \text{GeV}.$
- Find isolated clusters in calorimeter:
 - $E_{\gamma} > 1.4 \text{GeV}.$
 - veto γs from π^0 , η and BhaBha.
 - Use topological info to suppress continuum background.
- Background subtraction:
 - Estimate continuum using off-resonance data.
 - Estimate B decays using "corrected" MC.

11

b \rightarrow **s** γ : Inclusive method

- Photon energy spectrum peaks at half the b-quark mass.
- Yield above E_γ endpoint (2.8GeV) is consistent with zero.

 $BF(B \to X_{s}\gamma) = (3.31 \pm 0.19(stat.) \pm 0.37(syst.) \pm 0.01(boost)) \times 10^{-4}$ $(E_{\gamma} > 1.7 GeV)$ $BF(B \to X_{s}\gamma) = (3.37 \pm 0.41) \times 10^{-4} (E_{\gamma} > 1.6 GeV)$

 $<E_{y} = 2.281 \pm 0.032(stat.) \pm 0.053(syst.) \pm 0.001(boost) \text{ GeV}$

 $\langle E_{y}^{2} \rangle - \langle E_{y} \rangle^{2} = 0.0396 \pm 0.0156(stat.) \pm 0.0214(syst.) \pm 0.0012(boost) \text{ GeV}^{2}$

[BaBar, Preliminary, 383M BB]

$B \rightarrow X_s \gamma$: Semi-inclusive

- Sum of 16 exclusive $B \rightarrow X_{s} \gamma$ final states
 - 50% of total width.
- Hadronic mass range
 - $0.6 2.8 \text{ GeV/c}^2$: $E_v > 1.9 \text{GeV}$.
- Large backgrounds
 - veto photons from π^0/η .
 - boosted decision tree for continuum suppression .
- Most accurate measurement to date.

 $A_{CP}(b \rightarrow s\gamma) = -0.012 \pm 0.030(stat.) \pm 0.018(syst.)$

BF(**B** \rightarrow **X**_s γ): Summary

$$b \rightarrow d\gamma$$

[BaBar, PRL98, 151802 (2007) 347M BB]

- Continuum background significant novel use of information from lepton tags to suppress non-B backgrounds.
- 4D fit (5D in $\omega\gamma$) to extract signal

-
$$m_{ES}^{}$$
, ΔE , $\cos \theta_{H}^{}$, $NN_{out}^{}$ ($\cos \theta_{D}^{}$).

 $cos \theta_{H}$: helicity angle, NN_{out} : neural net output $cos \theta_{D}$: Dalitz angle

 $BF(B \rightarrow \rho \gamma) = (1.36 \pm 0.28(stat.) \pm 0.10(syst.)) \times 10^{-6}$ BF(B \rightarrow (\rho \omega) \gamma) = (1.25 \pm 0.25(stat.) \pm 0.09(syst.)) \times 10^{-6}

 $m_{\kappa\pi}$: invariant mass of $\pi\pi$ pair

- $B \rightarrow K^* \gamma$ backgrounds also a problem.
- 2D fit (3D for $\rho^0 \gamma$) to extract signal: M_{hc} , ΔE ($m_{\kappa_{\pi}}$).

 $BF(B \rightarrow \rho \gamma) = (1.21^{+0.24}_{-0.22} (stat.) \pm 0.12 (syst.)) \times 10^{-6}$ BF(B \rightarrow (\rho \omega) \gamma) = (1.14 \pm 0.20 (stat.)^{+0.10}_{-0.12} (syst.)) \times 10^{-6}

B \rightarrow (ρ,ω)γ and |V_t/V_t|

• Reminder:

 $\frac{BF(B \to \rho \gamma)}{BF(B \to K^* \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_{\rho}^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \xi^2 [1 + \Delta R]$ $(\zeta \sim 0.85, \Delta R \sim 0.1)$

• Average $\underline{BF}(\underline{B} \rightarrow (\rho, \omega)\gamma)$ gives: $BF(\underline{B} \rightarrow K^*\gamma)$

$$\frac{|V_{td}|}{|V_{ts}|} = 0.206 \pm 0.018$$

 B_d/B_s mixing gives 0.211 ± 0.007 .

A_{CP} in $B \rightarrow \rho \gamma$

- Direct CP in B⁺ $\rightarrow \rho^{+}\gamma$: $A_{CP}(B^{+} \rightarrow \rho^{+}\gamma) = \underline{N(B^{-} \rightarrow \rho^{-}\gamma) - N(B^{+} \rightarrow \rho^{+}\gamma)}$ $N(B^{-} \rightarrow \rho^{-}\gamma) + N(B^{+} \rightarrow \rho^{+}\gamma)$
 - Simultaneous fit to M_{bc} and ΔE of $B^+ \rightarrow \rho^+ \gamma$ and $B^- \rightarrow \rho^- \gamma$.
 - Asymmetries in background sources included in systematic error.
 - B \rightarrow D π control sample used to understand detector bias.

[BaBar, arXiv: 0708.1652 343M BB]

Semi-inclusive $b \rightarrow d\gamma$

- Sum of seven exclusive final states
 - Up to 4 π s, up to 1 π^0/η .
 - mass range $1.0 \le M(X_d) \le 1.8 \text{GeV/c}^2$.

(excludes ρ/ω resonances)

BF(B $\rightarrow X_{d}\gamma) = (3.1 \pm 0.9(stat.) \pm 0.7(syst.)) \times 10^{-6}$

- Inclusive BF measurement plus inclusive $|V_{td}/V_{ts}|$ coming soon...

Summary

- Precise measurements of $b \rightarrow s\gamma$:
 - Branching fractions with $E_v > 1.7 \text{GeV}$ and $E_v > 1.9 \text{GeV}$.
 - CP asymmetry with 0.6< M(X_c) <2.8GeV/ c^2 .
- New measurements of $b \rightarrow d\gamma$:
 - Branching fractions.
 - First measurements of the CP asymmetry of $B \rightarrow \rho \gamma$.
 - First evidence for $B \rightarrow X_d \gamma$: with 1.0< M(X_d) <1.8GeV/c².

Backup slides

Moriond, La Thuile, March 1-8 2008

PEP-II and BaBar at SLAC

Henning Flächer (CERN)

BaBar Detector

[Belle, PRL100, 021602 (2008) 657M BB]

B⁰

- Time-dependent CPV in B⁰ $\rightarrow \rho^{0}\gamma$ A_{CP}(Δt) = Ssin $\Delta m\Delta t$ + Acos $\Delta m\Delta t$
 - *S* ~zero in SM
 - A could be non-zero

$$S = -0.83 \pm 0.65(\text{stat.}) \pm 0.18(\text{syst.})$$

A = -0.44 \pm 0.49(stat.) \pm 0.14(syst.)

