Hadronic rare B decays at Belle and BaBar

2008/06/05 M.Iwasaki (U. Tokyo) For the Belle Collaboration

Introduction: Rare hadronic B-decays

Rare hadronic B-decays are rich sources of information

- Indirect CP Violation: Extract CKM parameters
- Direct CP Violation: Interfering SM amplitudes
- Search for new physics effects : study loop processes
- Measured BR, angular correlations
 - → Phenomenological test/development of the theoretical models

Introduction

In this talk, we'll cover:

- 1. Extraction of the angle ϕ_2/α of the UT
 - $B^0 \rightarrow \rho^0 \rho^0$ with isospin SU(2) (Belle)
 - B→a₁K with flavor SU(3) (BaBar)
- 2. B→VV(A) polarization : f_L
 - B⁰→ ω K*⁰ (Belle)
 - $B^0 \rightarrow b_1^{\mp} \rho^{\pm}$ (BaBar)
- 3. Baryonic B-decay : Br, A_{CP}
 - B→pp̄K* (Belle)

Analysis methods

■B reconstruction with ∆E and M_{bc}

$$\Delta E \equiv E_B^* - E_{\text{beam}}^*$$

$$m_{bc} \equiv \sqrt{E_{\text{beam}}^{*2} - p_B^{*2}}$$

Main background

 $\bullet e^+e^- \rightarrow \overline{q}q(q=u,d,s,c) \rightarrow \text{ event topology}$

Signal Extraction

■Unbinned maximum likelihood fit to ∆E, Mbc. Mass...

$$\mathcal{L} = \frac{exp(-\sum_{j} n_{j})}{n!} \prod_{i=1}^{n_{cand}} (\sum_{i} n_{j} \mathcal{P}_{j}^{i})$$

Extraction of the $\phi_2(\alpha)$ of the UT

- Hadronic B decays from b \rightarrow uud transitions provide the most direct information about the weak phase ϕ_2 (α).
- The difficulty in extracting ϕ_2 is the presence of subleading penguin amplitudes (P) with a different weak phase than that of the dominant tree amplitudes (T)
- This difficulty can be overcome by using symmetries:
 - isospin SU(2) (PRL 65, 3381(1990), PRD 71, 07401(2005)
 - approximate flavor SU(3) (PRD57, 1783 (1998)

SU(3)

in ΔS =0 decays: $T \sim V_{ub} V_{ud}^*$ and $P \sim V_{cb} V_{cd}^*$ in ΔS =1 decays: $T' \sim V_{ub} V_{us}^*$ and $P' \sim V_{cb} V_{cs}^*$

thus P'/T' is $1/\lambda^2$ enhanced over P/T \Rightarrow can be used to bound P/T

Search for $B^0 \rightarrow \rho^0 \rho^0$

Color-suppressed Tree and Penguin

→ Small branching fraction (~ 1x10⁻⁶)

• This decay can complete the isospin analysis to constrain the penguin contribution in the extraction of ϕ_2

$$A_{L}^{+-} = BF(B^{0} \to \rho^{+}\rho^{-})$$

$$\overline{A}_{L}^{+-} = BF(\overline{B}^{0} \to \rho^{+}\rho^{-})$$

$$A_{L}^{+0} = BF(B^{+} \to \rho^{+}\rho^{0})$$

$$\overline{A}_{L}^{-0} = BF(\overline{B}^{-} \to \rho^{-}\rho^{0})$$

$$A_{L}^{00} = BF(B^{0} \to \rho^{0}\rho^{0})$$

$$\overline{A}_{L}^{00} = BF(\overline{B}^{0} \to \rho^{0}\rho^{0})$$

Assume $f_L = 1$ (100% longitudinal polarization) $\rho^0 \pi \pi$, 4π excess are seen

UL consistent with BaBar : Br($\rho^0 \rho^0$) = (0.84±0.29 ±0.17) × 10⁻⁶ arXiv:0708.1630

Observation of B \rightarrow a₁(1260)K

- Time-dependent CPV B⁰ \rightarrow a₁(1260) π can be used to extract the effective ϕ_2 : $\phi_2^{\text{eff}} = \phi_2 + \Delta \phi_2$
- Using SU(3) related modes such as B \rightarrow K₁ π and B \rightarrow a₁K , it is possible to bound $\Delta \phi_2$
- B \rightarrow K₁ π has been measured

BaBar 383MBB PRL100, 51803(2008)

$$\begin{split} \mathcal{B}(B^0 \!\!\to\!\! a_1^- \, K^+) \!\cdot\! \mathcal{B}(a_1^- \!\!\to\!\! \pi^+ \!\!\pi^- \!\!\pi^-) &= (8.2 \pm 1.5 \pm 1.2) \!\cdot\! 10^{-6} \, (5.1 \, \sigma) \\ A_{ch}(B^0 \!\!\to\!\! a_1^- \, K^+) &= -0.16 \pm 0.12 \pm 0.01 \\ \mathcal{B}(B^+ \!\!\to\!\! a_1^+ \, K^0) \!\cdot\! \mathcal{B}(a_1^+ \!\!\to\!\! \pi^+ \!\!\pi^+ \!\!\pi^-) &= (17.4 \pm 2.5 \pm 2.2) \!\cdot\! 10^{-6} (6.2 \, \sigma) \\ A_{ch}(B^+ \!\!\to\!\! a_1^+ \, K^0) &= 0.12 \pm 0.11 \pm 0.02 \end{split}$$

B→VV(A) polarization

- Helicity amplitudes
 A₀ (longitudinal), A_{±1} (transverse)
- $f_L = A_0/(A_0 + A_{+1} + A_{-1})$
- Naively predict $f_L = 1-(m_v/m_B)^2 \sim 1$

Longitudinal Polarization Fraction (f_L)

Message:

- Tree dominated decays: f_I ~1
- Penguin dominated decays: f₁~0.5

Theoretical explanation:

- Penguin annihilation (Kagan)
- Non-factorizable vertex corrections, hard spectator scattering (Beneke, Rohrer, D.S.Yang; Cheng, K.C.Yang)

Search for $B^0 \rightarrow \omega K^{*0}$

B→VV b→s penguin dominates

4D fit after continuum suppression ΔE , M_{bc} , $M(K\pi)$ and $M(3\pi)$

Yield =
$$15.1^{+11.1}_{-10.0}$$

Br =
$$(1.2^{+0.9}_{-0.8} \pm 0.2) \times 10^{-6}$$

$$< 2.7 \times 10^{-6}$$

Significance = 1.6σ

Preliminary

arXiv:0707.2462

Large non-resonant Kπ contribution

$B^0 \rightarrow \omega K^{*0}$ continue

Bkg subtracted distribution

Belle 520MBB Preliminary

Both methods give the similar $f_{\omega K}^*$ (ωK^* signal fraction) of ~10%

→ Large non-resonant

B→ωK* measurement from Belle ... Will update soon

Search for $B^0 \rightarrow b_1 \mp \rho^{\pm}$

B \rightarrow VA Tree dominant channels Dominant b₁ decay: b₁ \rightarrow $\omega\pi$

-New experimental search for B→b₁[∓]ρ[±] modes

- -New theory predictions for B→b₁V modes
- -Predicted Br(B⁰ \rightarrow b₁- ρ ⁺)is about ×3 Br(B⁰ \rightarrow b₁- π ⁺)

		Br(10 ⁻⁶)	f_L	Br(10 ⁻⁶)
	Mode	C	heng, Yang	$\overline{\mathrm{CMV}}$
Γ	$\overline{B}^0 \to b_1^+ \rho^-$	$32.1_{-14.7-4.7}^{+16.5+12.0}$	$(0.96^{+0.01}_{-0.02})$	1.6
L	$\overline{B}^0 \to b_1^- \rho^+$	$0.6^{+0.6+1.8}_{-0.3-0.2}$	$\left(0.98^{+0.00}_{-0.32}\right)$	0.55
Ī	$\overline B^0 \to b_1^0 \rho^0$	$0.4^{+0.4}_{-0.2}$	$(0.82^{+0.16}_{-0.51})$	0.002
	$B^- \to b_1^0 ho^-$	$29.0_{-10.6-5.8}^{+16.2+5.4}$	$(0.96^{+0.01}_{-0.06})$	0.86
า	$B^- \to b_1^- \rho^0$	$0.9^{+1.7}_{-0.6}$	$(0.90^{+0.06}_{-0.33})$	0.36
	$\overline B^0 o b_1^0 \omega$	$0.1^{+0.2+1.4}_{-0.0-0.0}$	$(0.10^{+1.04}_{-0.01})$	0.004
	$B^- \to b_1^- \omega$	$0.9^{+1.4}_{-0.5}^{+2.7}_{-0.3}$	$(0.91^{+0.07}_{-0.33})$	0.38
	$\overline B^0 \to b_1^0 \phi$	$0.01^{+0.01}_{-0.00}{}^{+0.01}_{-0.00}$	$\left(0.98^{+0.01}_{-0.33}\right)$	0.0002
	$B^- \to b_1^- \phi$	$0.02^{+0.02+0.03}_{-0.01-0.00}$	$\left(0.98^{+0.01}_{-0.33}\right)$	0.0004
	$\overline{B}^0 \to b_1^+ K^{*-}$	$7.6^{+3.3+40.7}_{-2.4-7.1}$	$(0.71^{+0.17}_{-0.66})$	0.32
	$\overline{B}^0 \to b_1^0 \overline{K}^{*0}$	$3.0^{+1.1}_{-0.7}{}^{+4.6}_{-2.1}$	$(0.80^{+0.20}_{-0.70})$	0.15
S	$B^- \to b_1^- \overline{K}^{*0}$	$12.1^{+4.4}_{-3.2}^{+21.2}_{2.7}$	$(0.80^{+0.20}_{-0.70})$	0.18
	$B^- \to b_1^0 K^{*-}$	$6.8^{+2.4+12.5}_{-1.8-4.4}$	$(0.84^{+0.15}_{-0.29})$	0.12

Cheng & Yang, arXiv:0805.0329

Search for $B^0 \rightarrow b_1 \mp \rho^{\pm}$ Preliminary (First Presented at FPCP08)

- Should be > $b_1^-\pi^+$?
- 2nd-class current rule →

 $B^0 \rightarrow b_1^{\mp} \rho^{\pm} \gg B^0 \rightarrow b_1^{\pm} \rho^{\mp}$ (expt. Doesn't distinguish)

-Find no excess.

$${\cal B}(B^0 o b_1^\mp
ho^\pm) = (-0.1 \pm 0.9 \pm 0.7) imes 10^{-6} \ (< 1.7 imes 10^{-6}, \ 90\% \ {\rm C.L.})$$
 BaBar 465MBB

- Rather puzzling lack of agreement with the theoretical estimate.

Test: add 100 5 Signal MC events 05.25

Baryonic B decays

$$B^{\theta} \rightarrow p\bar{p}K^{*\theta}$$

$$B^+ \rightarrow p\bar{p}K^{*+}$$

$B \rightarrow p\bar{p}K^*$ (introduction)

Threshold enhancement of the baryon pair mass(m1+m2) spectra $B \rightarrow p\bar{p}K^+$, $p\bar{p}K^0$, $p\bar{p}\pi^+$, $p\bar{p}K^{*+}$, $p\bar{\Lambda}\pi$, $p\bar{\Lambda}\pi^0$, $p\bar{\Lambda}\gamma$, $\Lambda\bar{\Lambda}K^+$

No enhancement in $p\bar{p}K^{*0}$ by BABAR(PRD76,092004,2007) Enhancement in $p\bar{p}K^{*0}$ is predicted(PRD75,094013,2007)

 $B(p\bar{p}K^+)>B(p\bar{p}K^{*+})>B(p\bar{p}K^{*0})$ (PRD66,014020) Large DCPV prediction $A_{cp}(B^+ \rightarrow p\bar{p}K^{*+}) \sim 20\%$ (PRD75,094013,2007) Angular distributions \rightarrow help to understand decay mechanisms

Update B→ppK*0, ppK*+, ppK0 with 535MBB(6x last data)

$B \rightarrow p\bar{p}K^*$

ω₃₀ ω₂₀

ΔE (GeV)

M_{bc} (GeV/c²)

arXiv:0802.0336

To be published in PRL

Belle 535MBB

Unbinned maximum likelihood fit

$$\mathcal{L} = \frac{exp(-\sum_{j} n_{j})}{n!} \prod_{i=1}^{n_{cand}} (\sum_{j} n_{j} \mathcal{P}_{j}^{i})$$
$$\mathcal{P}_{j}^{i} = P_{j}(M_{bc}^{i}, \Delta E^{i}, M_{K^{*}}^{i})$$

- \blacksquare M($\bar{p}p$)<2.85GeV/c²
- First observation of B⁰→ppK*⁰
- Consistent with the theoretical prediction $B(p\bar{p}K^+)>B(p\bar{p}K^{*+})>B(p\bar{p}K^{*0})$
- No significant A_{cp}

Mode	N_S	\mathcal{S}	$\mathcal{B}(\times 10^{-6})$	\mathcal{A}_{CP}
$B^0 \to p\overline{p}K^{*0}$	$70.1^{+14.8}_{-13.9}$	7.2	$1.18^{+0.29}_{-0.25} \pm 0.11$	$-0.08 \pm 0.20 \pm 0.02$
$B^+ \to p\overline{p}K^{*+}$	$54.2^{+10.9}_{-10.1}$	8.8	$3.38^{+0.73}_{-0.60} \pm 0.39$	$-0.01 \pm 0.19 \pm 0.02$
$B^0 \to p\overline{p}K^0$	$107.8^{+12.5}_{-11.8}$	14.8	$2.51^{+0.35}_{-0.29} \pm 0.21$	

B→ppK* (threshold enhancement)

 $p\bar{p}$ mass enhancement near threshold can be seen Features similar to the theoretical prediction

$B \rightarrow p\bar{p}K^*$ (K^* angular distribution)

Belle 535MBB

 $M(p\bar{p}) < 2.85 GeV/c^2$

 $H_0(K^{*0}) = 101 \pm 13 \pm 3$ % Large K* polarization, consistent with $H_0(K^{*+}) = 32 \pm 17 \pm 9$ % b \rightarrow s penguin dominance

$B \rightarrow p\bar{p}K^*$ (proton angular distribution)

 $p\bar{p}K^*$ is similar to theoretical expectation and $p\bar{p}K^*$

Summary

Rare Hadronic B-decays provide many observables

1. The measurements to constrain the Unitarity Triangle angles: Updated BF of $B^0 \rightarrow \rho^0 \rho^0$, two observations for $a_1(1260)K$

- f_L measurements and study of angular correlations in B→VV(A) to probe new physics effects:
 Search for B⁰→ωK*⁰, B⁰→b₁[∓]ρ[±]
- Measurement of the dibaryon systems from B:
 Observation of B⁰→pp̄K*⁰
 Threshold enhancement / large K*⁰ polarization