

Searches for Physics Beyond the Standard Model at CDF

Monica D'Onofrio

IFAE-Barcelona

On behalf of the CDF collaborations

3rd workshop on MC Tools for Beyond Standard Model Physics, CERN 10th March 2008

Beyond SM: the unknown

Good reasons to believe there is unknown physics beyond the Standard Model

- Many possible new particles and theories
 - Supersymmetry
 - Extra Dimension
 - New Gauge groups (Z', W')
 - New fermions (e*, t', b' ...)
 - **...**

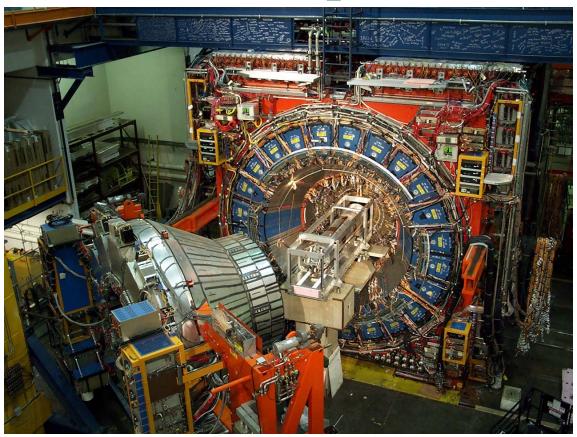
Can show up in direct searches or as subtle deviations in precision measurements

→ Model-inspired searches

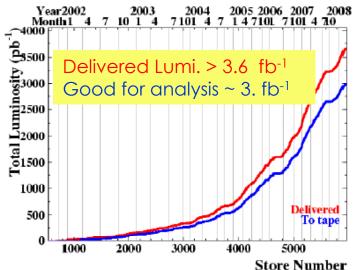
- Theory driven
- Model-dependent optimization of event selection
- Set limits on model parameters

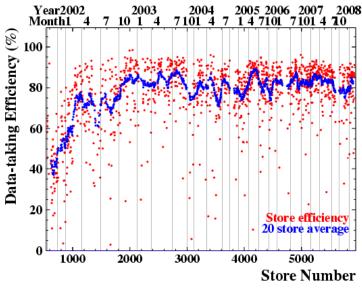
→ Signature-based searches

- Signature driven
- Optimize selection to reduce backgrounds
- Event count; event kinematics


Outline

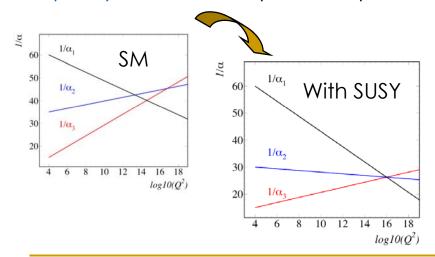
- Overview of the CDF experiment
- Model-inspired searches:
 - mSUGRA:
 - Chargino/neutralino
 - Squark/gluino
 - Stop/Sbottom
 - \square W' \rightarrow tb
 - □ Flavor Changing Neutral Current: t → Zq
 - MSSM Higgs
- Signature-based searches
 - High Mass resonances: Dielectron, dijet
 - $\neg \gamma + \not \vdash_{\uparrow}, \gamma \gamma + \not \vdash_{\uparrow}, \gamma \gamma + \tau$
- Emphasize new results based on $\int L \ge 1$ fb⁻¹ of data
- Underlying problems and issues in terms of MC tools


CDF results


```
http://www-cdf.fnal.gov/physics/exotic/exotic.html
http://www-cdf.fnal.gov/physics/new/hdg/hdg.html
http://www-cdf.fnal.gov/physics/new/top/top.html
```

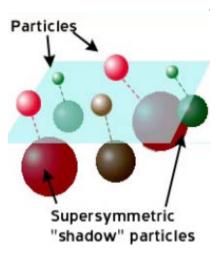
The CDF experiment

- Multipurpose detector
- •Recording data with high efficiency (~85%) and making full use of detector capabilities.


Model-inspired searches

Supersymmetry

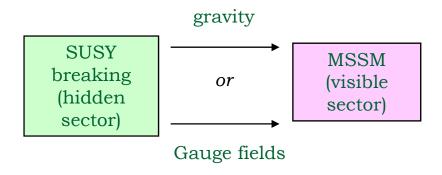
• New symmetry relating fermions and bosons to cancel out contributions to Δm^2_H : Supersymmetry


Q|Fermion> = Boson

- Minimal SuperSymmetric SM (MSSM):
 - Mirror spectrum of particles
 - Enlarged Higgs sector (two doublets with 5 physical states)
- Define R-parity = $(-1)^{3(B-L)+2s}$
 - Arr R = 1 for SM particles, R = -1 for MSSM partners
- → if R-parity conserved, sparticles produced in pair, LSP stable

Unifications of forces possible

- Provide a suitable candidate for Dark matter:
 - LSP stable if R-parity is conserved
 - Typically LSP is the lightest neutralino
 - Current mass limit > 43 GeV
 - Abundance of neutralino matches Dark Matter density in the Universe

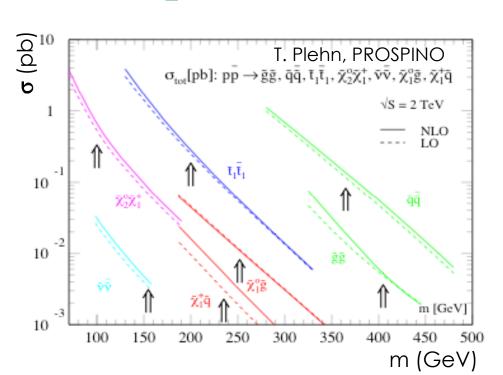

Symmetry breaking

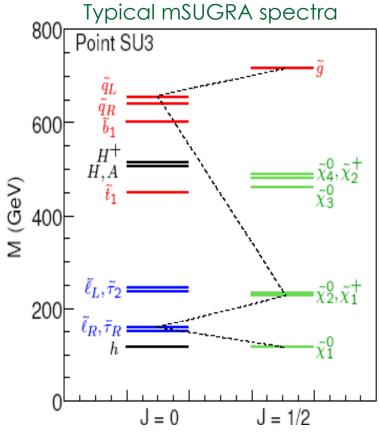
No SUSY particles found as yet:

- SUSY must be broken: breaking mechanism determines phenomenology and search strategy at colliders
- More than 100 parameters even in minimal (MSSM) models!

choose a model

- mSUGRA (gravity-mediated susy breaking)
 - Neutralino is the LSP
 - Common scalar and gaugino masses (5 parameters at GUT scale)
 - Many possible final states
- GMSB (gauge-mediated susy breaking)
 - Gravitino is the LSP
 - □ Photons from $\chi \rightarrow G\gamma$ in the final states
- AMSB (anomaly-mediated susy breaking)
- Split SUSY

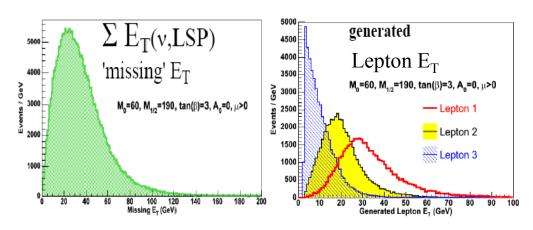



R-parity

- conserved: sparticles produced in pairs
- Not-conserved: single sparticle production, constrained by proton decay

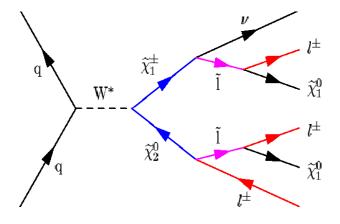
mSUGRA: Sparticles cross sections and spectrum

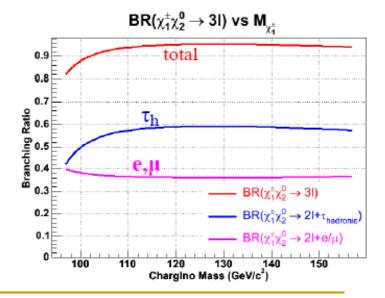
Typical mSUGRA spec

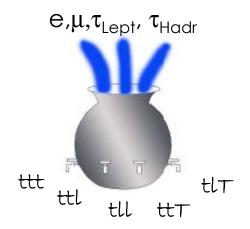


- Squarks and gluinos are heavy
- Chargino/neutralino cross sections are sizeable
- mixing of third generation leads to light stop/sbottom and stau
- One higgs is very light (< 135 GeV)</p>

Typical signature at colliders: large transverse energies and large missing E_T .


Search for chargino/neutralino


- mSUGRA $\chi^0_2 \chi^{\pm}_1$ pair production
 - Signal generated with PYTHIA Tune A (Isasugra v7.51), rescaled to NLO PROSPINO cross section
- Signature: three leptons and significant missing transverse energy (万)
 - Small cross sections (~0.1-0.5 pb)
 - Very low background


- Hadronic decaying τ as "isolated tracks" (T_{τ})

The analysis

- 5 exclusive channels with optimized energy lepton thresholds
- various combinations of "tight" (t) and "loose" (l) lepton categories
 - \square 3-leptons (e, μ , τ_{Lept})
 - $ext{ 2-leptons (e,}\mu, au_{\text{Lept}}) + \text{iso-track} + (au_{\text{Hadr}})$
- Ordered in terms of S/B

Signal region: Missing $E_T > 20$ GeV + topological cuts, $N_{jet} = 0.1$ and $E_T^{jet} < 80$ GeV

SM Background

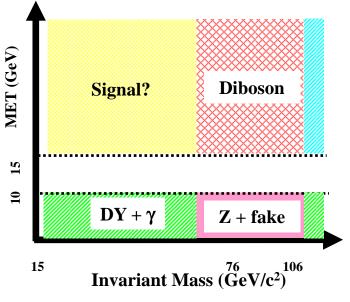
MC-driven estimate

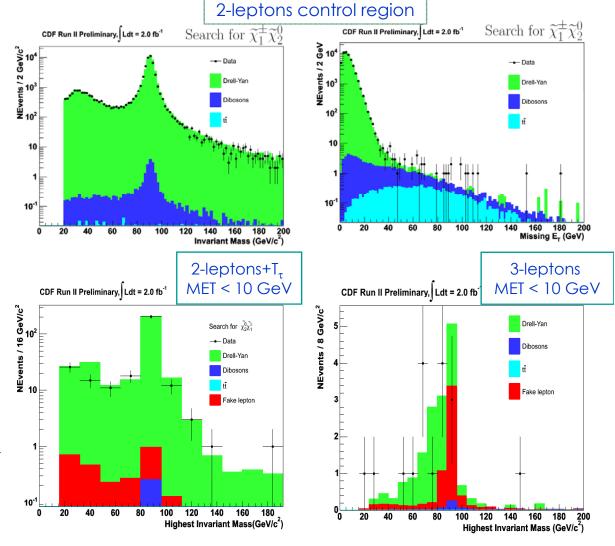
- Drell-Yan
- Diboson (WW, WZ/γ^* , ZZ/γ^* , $W\gamma$)
- top pair production t-tbar
- \rightarrow PYTHIA 6.216 (Tune A, P_T^z correction)

NNLO/NLO theoretical cross sections used for absolute renormalization

Data-driven estimate

Misidentified tight/loose leptons or Iso-tracks (fakes)

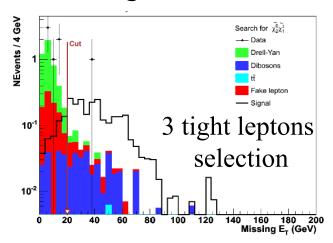

(W+jets, QCD)


Large number of control regions defined to test SM predictions

Control regions

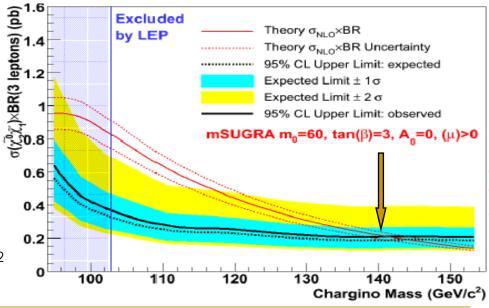
Dilepton and trilepton control regions defined in terms of E/ and the invariant mass of the 2 leading leptons

→ 47 in total!

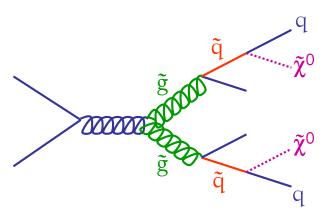


Results and exclusion limit

channel	mSUGRA Signal	SM Expected	DATA
Trilepton (3 channels)	$4.5 \pm 0.2 \pm 0.4$	$0.88 \pm 0.05 \pm 0.13$	1
dilepton + track (2 channels)	6.9± 0.2 ± 0.7	$5.5 \pm 0.7 \pm 0.9$	6

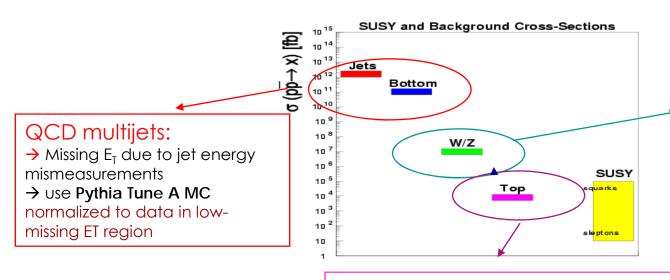

mSUGRA Benchmark: m_0 =60 GeV/ c^2 , $m_{1/2}$ =190 GeV/ c^2 , $tan\beta$ =3, A_0 =0, μ >0

Good agreement between data and SM prediction → set limit



- Use Bayesian approach
- Sensitive up to 145 GeV/c²
- Mass(χ^{\pm}_{1}) excluded up to 140 GeV/c²

First chargino mass limit in mSUGRA scenario at the Tevatron!


Search for Squarks and gluinos

- ✓ pair production of gluinos and squarks
- √ scan across gluino/squark plane
 - ✓ PYTHIA Tune A, input masses, mixing and couplings using ISASUSY 7.74
 - ✓ Normalized to PROSPINO v2 NLO s

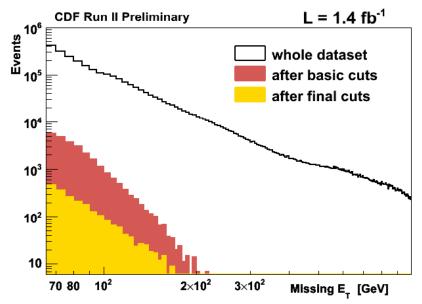
 $\tan \beta = 5$, $A_0 = 0$, $\mu < 0$ $M_0 \in [0,500 \text{ GeV/c}^2]$ $m_{1/2} \in [50,200 \text{ GeV/c}^2]$

✓mSUGRA signature with energetic jets of hadrons and large missing E_T (χ°)

$\underline{W \rightarrow lv + jets}$, $\underline{Z \rightarrow ll + jets}$ and $\underline{Z \rightarrow vv + jets}$:

Use ALPGEN v2.1+PYTHIA
 6.325 (MLM matching),
 normalized to the inclusive
 measured DY cross section

DiBoson


use MC normalized to MCFM
 NLO cross section

■ Top: use Pythia MC samples mt = 172 GeV/ c^2 normalized to NLO cross section σ_{ttbar} = 7.3 pb

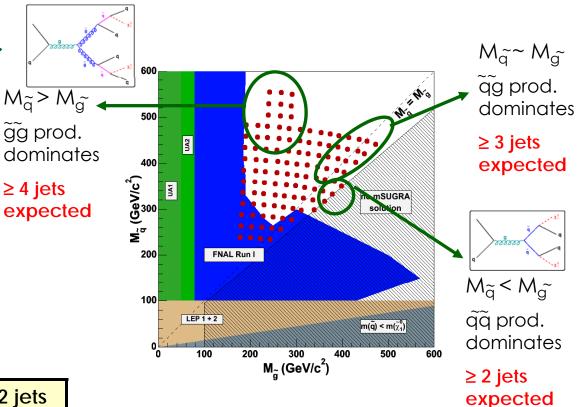
Background rejection

Cleanup Cuts

- ▶ at least one <u>central jet</u> with $|\eta| < 1.1$
- ▶ minimum missing E_T of <u>70 GeV</u>
- ▶beam-related backgrounds and cosmics. Removed using vertex information, calorimeter activity with correspondent tracking activity...

W/Z+jets and diboson rejection

- ► <u>Electromagnetic fraction</u> of the jets less than 90% to reject electrons mis-identified as jets
- ▶ $|\Delta\phi|$ (missingE_T-isolated track) |>0.7| to reject events with MET due to undetected muons
- ▶ Z veto applied

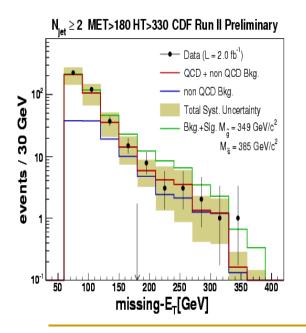

QCD rejection

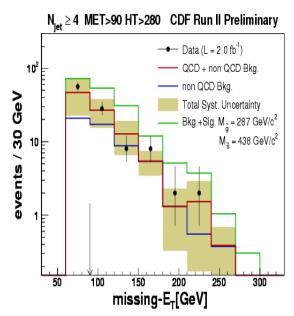
▶ $|\Delta\phi|$ (missingE_T-jets) | > 0.7 to avoid events where the missing E_T is due to jet enregy mismeasurement.

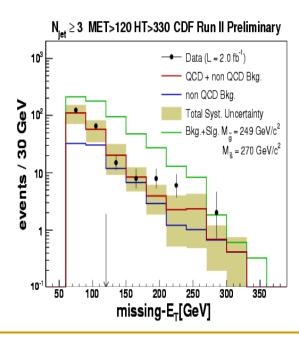
Optimization

- E_T,H_T = ΣEtj_(j=1..4), E_T of the leading jets considered to further discriminate signal from background
- Different topologies expected throughout the squark-gluino plane

[GeV]	4 jets	3 jets	2 jets
HT	280	330	330
missing E_T	90	120	180
Et(jet1)	95	140	165
Et(jet2)	55	100	100
Et(jet3)	55	25	
Et(jet4)	25		

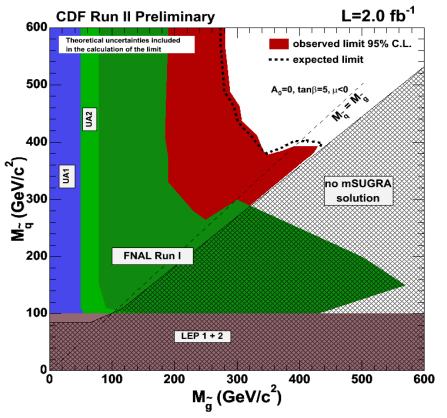



- Use jet multiplicity topologies to maximize signal efficiencies and enhance S/√B
 - → Define 3 signal regions

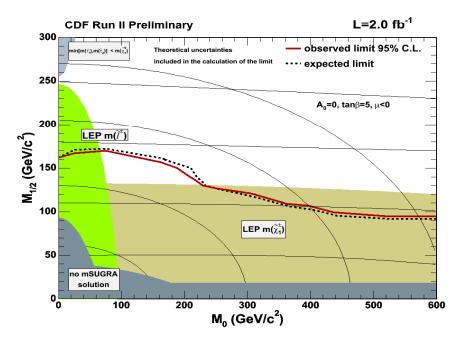

DATA vs SM predictions

events in 2.0 fb ⁻¹	DATA	SM Expected
≥ 4 jets	45	$48 \pm 17 \text{ (syst} \pm \text{stat)}$
≥ 3 jets	38	$37 \pm 12 \text{ (syst } \pm \text{ stat)}$
≥ 2 jets	18	$16 \pm 5 \text{ (syst} \pm \text{stat)}$

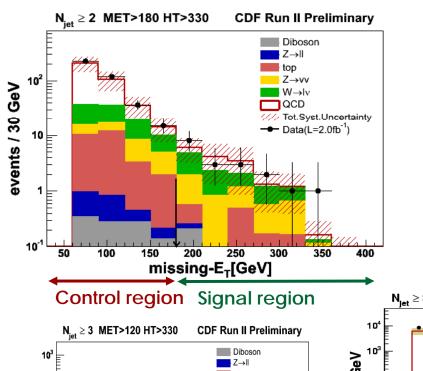
Good agreement between Observed and Expected events

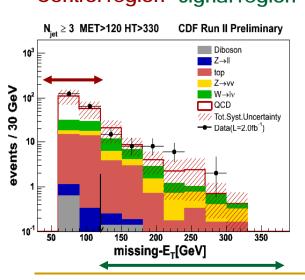

Workshop on MC Tools for BSM Physics CERN, 10/3/2008

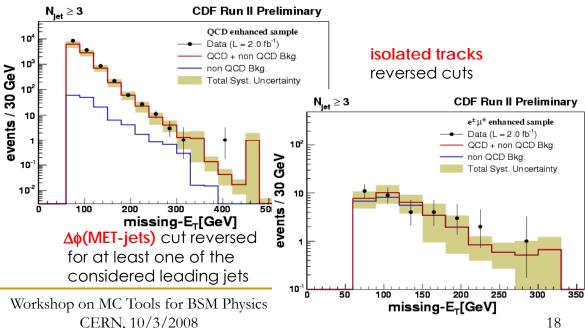
Exclusion limits


Use Bayesian approach

95% C.L. Exclusion limit on $M_{\tilde{g}}M_{\tilde{q}}$ and $M_0M_{1/2}$ planes

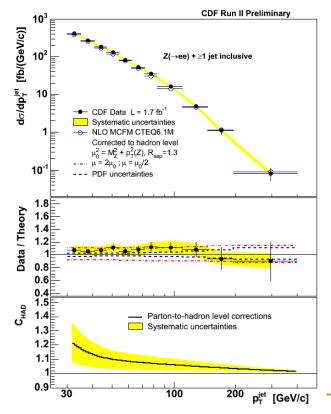

- When $M_{\widetilde{q}}=M_{\widetilde{q}}\to M>392~\text{GeV/c}^2$
- $M_{\tilde{g}} < 280 \text{ GeV/c}^2$ excluded in any case


• LEP limit improved in the region where $75 < M_0 < 250$ and $130 < M_{1/2} < 170$ GeV/c²



Knowledge of SM Backgrounds

- Understanding SM backgrounds is fundamental
 - Tested away from signal region
 - In q̃/g̃ analysis control regions done reversing selection requirements
- PYTHIA Tune A does a good job for QCDmultijets and top production
- Boson+jets well reproduced with ME+PS (ALPGEN + PYTHIA in this case) once normalized to measured DY cross section

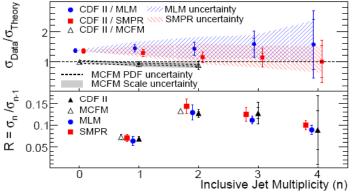


W/Z + inclusive jets

Dedicated measurements performed for boson+jets cross sections

Z(→e+e-)+jets:

- clean signature, low background
- Does not constitute background for BSM physics involving MET


MCFM: NLO, no showering + CTEQ6.1M, hadron-to-parton corrections from PYTHIA TUNE A

- Data in good agreement with MCFM NLO predictions
- Can define a common scale factor for all jet multiplicity

W+jets

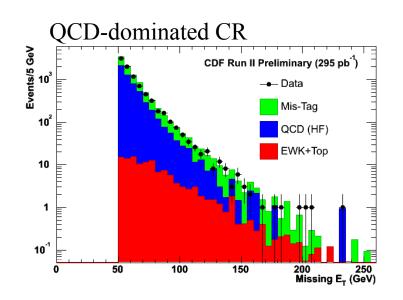
- Statistics for high jet multiplicity
- Real MET, signature similar BSM signals

MLM: ALPGEN v2.12 (LO) + Herwig v6.5 + MLM + CTEQ5L

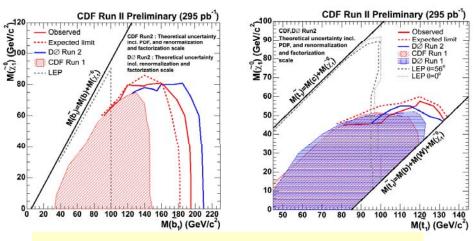
SMPR: MadGraph v4 (LO) + Pythia v6.3 + CKKW + CTEQ6L1

MCFM: NLO, no showering + CTEQ6.1M

Workshop on MC Tools for BSM Physics CERN, 10/3/2008


Model-inspired searches: heavy flavor in the final state

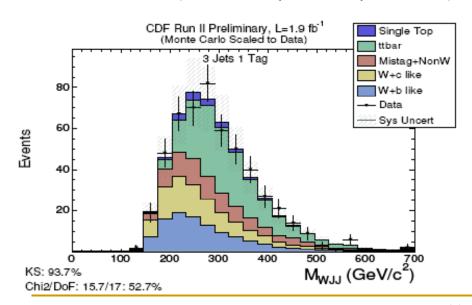
Sbottom/stop searches


- In mSUGRA framework, dedicated searches for b/t pair production
 - assume masses are light and sbottom/stop decay in b/c + neutralino (LSP)
- Final state: missing E_T + HF jets, identified via tagging algorithms

Main background:

- top, W/Z+jets, QCD multi-jet
- Tests MC predictions in control regions

- Light Flavor contributions (mis-tags) → from data
- HF contributions → from MC samples
 - ALPGEN v1.3+HERWIG 6.5: W/Z+jets(b,c)
 - PYTHIA 6.216 Tune A: di-boson, top, QCD(bb,cc))
- QCD Multi-jet normalization → extracted from data

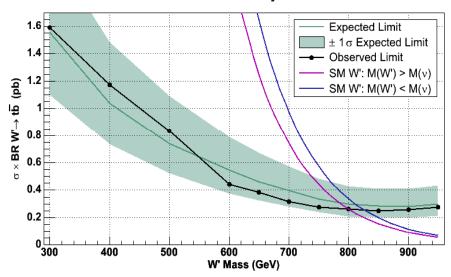

On-going searches updates with more data and new MC tools (ALPGEN v2)

$W' \rightarrow t\bar{b}$

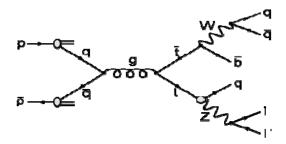
- Search for resonant $t\overline{b}$ (+cc) pair production
- In W+2 jets and +3 jets channels (semileptonic W), look for unexpected structure in M(Wjj)

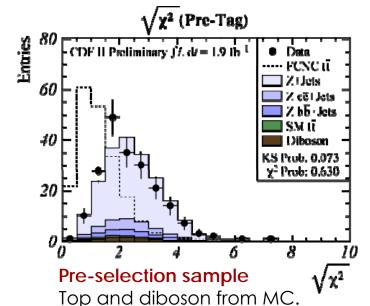
Background estimate:

- DiBoson and tt: Pythia MC, normalized to NLO cross sections
- W+bb/+cc/+c/+mistagged light quark jets:
 - Normalization taken from data
 - Determine HF fraction from MC samples (ALPGEN v2+PYTHIA)
 - HF fraction calibrated in W+1 jet data sample using distributions sensitive to HF content (shape informations)
 - Remove overlap W+inclusive jets / W+HF jets MC samples


q' W' \bar{b}

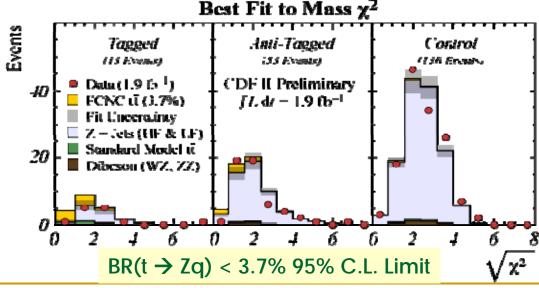
W' with SM-like fermions coupling


Event selection


- -1 high p_T lepton (p_T>20 GeV)
- -MET>25 GeV, 2 or 3 jets
- -At least 1 tagged jets
- -Z and QCD veto applied

95% C.L. Observed Limit - CDF Run II Preliminary: 1.9 fb⁻¹

$FCNC (t \rightarrow qZ)$


ightharpoonup Free parameter in the χ^2 fit

Z+jets backgrounds scaled to

- In SM, top FCNC decays highly suppressed (BR~10-14)
- Some SUSY models → higher BR (up to 10-4)
 - □ FCNC signal: PYTHIA 6.216 Tune A, m_{top} = 175 GeV/c²
- Z(e⁺e⁻,μ⁺μ⁻)+4 jets candidate events perform a template fit of mass χ²

$$\chi^{2} = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_{W}}\right)^{2} + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t}}{\sigma_{t \to Wb}}\right)^{2} + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t}}{\sigma_{t \to Zq}}\right)^{2}$$

- Z+jets dominant background: template from MC (ALPGEN v2+PYTHIA) → rely only on the shape
- Two signal regions: ≥1 b-tag jets, anti-btag jet

match the data.

Heavy flavor-jets SM processes

Difficult to predict heavy flavor bkg in BSM searches:

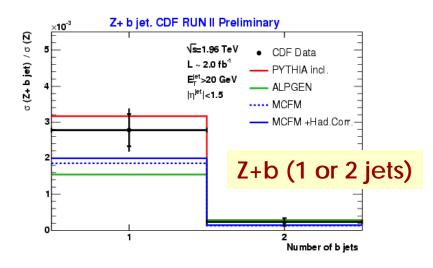
→ use MC samples for variable shapes and rescale to data

- Boson+jets: estimations using ME+PS or NLO calculations
- → dedicated measurements performed
 - Ambiguities due to ME and PS overlap
 - Large uncertainties (PDF, μ_R , μ_E)

Predictions underestimated

W+b (1 or 2 b-jets)

Result $\sigma_x BR = 2.74 \pm 0.27$ (stat) ± 0.42 (syst) pb

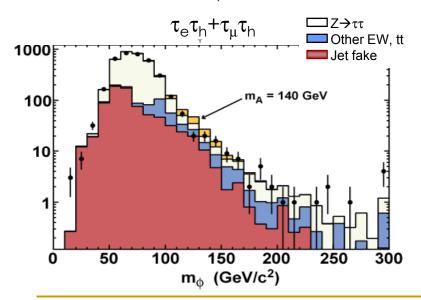

Prediction: $\sigma_x BR = 0.78 \text{ pb}$

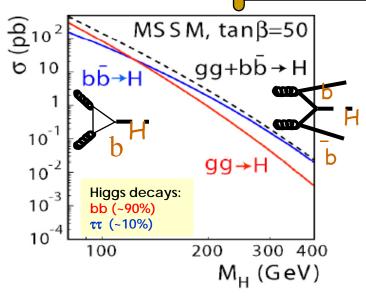
ALPGEN v2.10' + Pythia v6.325 + MLM + CTEQ6L

W+c (single jet)

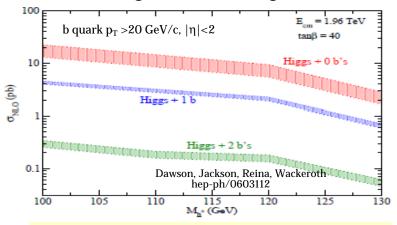
Result: $\sigma_x BR = 28.5 \pm 8.2$ (stat) ± 4.4 (syst) ± 1.7 (lum) pb

Prediction: $\sigma \times BR = 22.2 \pm 1.2$ (PDF) ± 3.8 (scale) pb


	CDF Data	PYTHIA	ALPGEN	HERWIG	NLO	NLO
						+U.E $+$ hadr.
$\sigma(Z + b \text{ jet})$	$0.86 \pm 0.14 \pm 0.12 \text{ pb}$	-	-	-	0.51 pb	0.53 pb
$\sigma(Z + b \text{ jet})/\sigma(Z)$	$0.336 \pm 0.053 \pm 0.041\%$	0.35%	0.21%	0.21%	0.21%	0.23%
$\sigma(Z+b\mathrm{jet})/\sigma(Z+\mathrm{jet})$	$2.11 \pm 0.33 \pm 0.34\%$	2.18%	1.45%	1.24%	1.88%	1.77%


Neutral MSSM Higgs

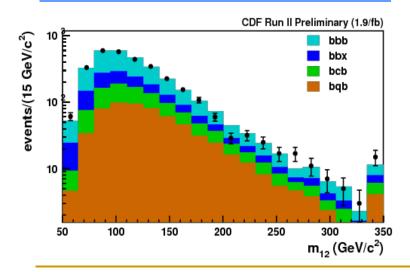
- In MSSM, two Higgs doublets
 - Three neutral (h, H, A), two charged (H[±])
 - Properties of the Higgs sector largely determined by $m_{\mbox{\scriptsize A}}$ and $\mbox{tan}\beta$
 - Higher-order effects introduce other SUSY parameters
- Large Higgs production cross section at large $tan \beta$.

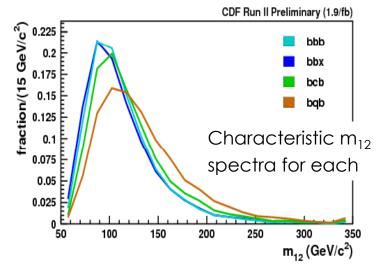

1.9 fb⁻¹

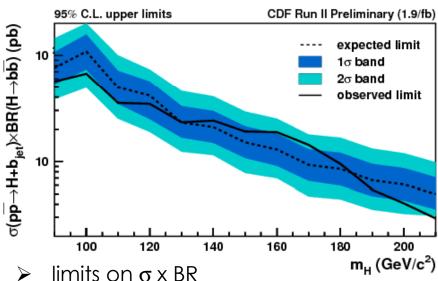
H \rightarrow ττ: major background: Z \rightarrow ττ Use partial mass τ_{lept}, τ_h, Missing E_T

H → bb: "3b" channel best compromise between signal and background rates

Search in mass of two lead jets


MSSM Higgs(bb)b


Backgrounds:

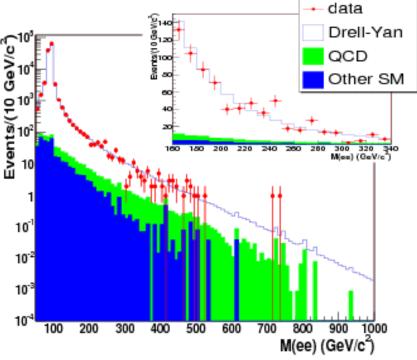

QCD-multijets (two true b-tags + b/c/fake tag)

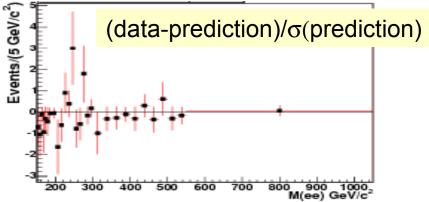
- Start from double-tagged bb sample (fake-tags subtracted), then weight events by flavor hypothesis
- Correct bbb and bcb shapes for double/triple-tag selection bias
- Fit the observed m₁₂ spectrum with the backgrounds and a Higgs shape

No significant excess observed

Signature-based searches

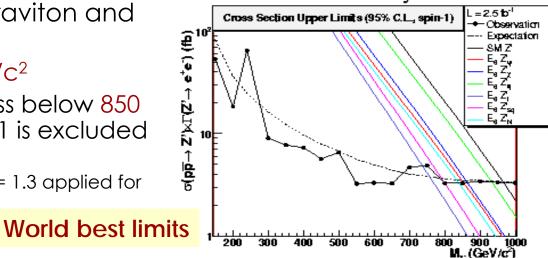
2.5 fb⁻¹


Search for High Mass e^+e^- Resonance

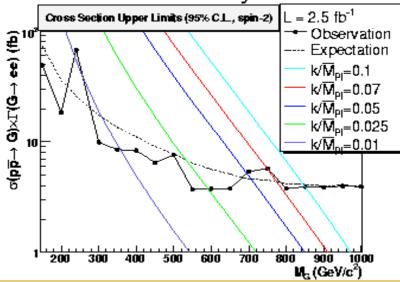

- Many models with di-lepton resonances
 - \Box E₆ Z's
 - RS graviton
- Central-Central (|η_{1,2}|<1) or Central-Forward (|η|<2) e⁺e- pair with E_T>25 GeV

Major Backgrounds:

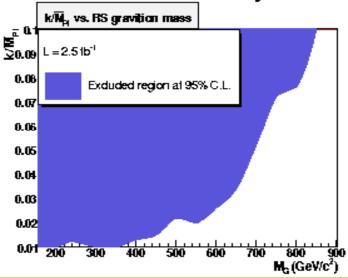
- DY: PYTHIA, normalized to data in Z mass window
- QCD (including W+jets): data-driven
- Resonance search (mass range 150-1000 GeV/c²) performed with unbinned likelihood ratio
 - → Fluctuation ~ 240 GeV/c²
 - \rightarrow S/ σ B = 3.8
 - Probability of observing a background fluctuation: 0.6% = 2.5 σ significance (5% if using previous analysis selection)

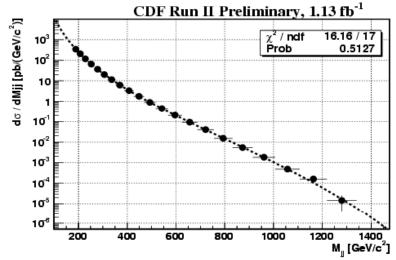


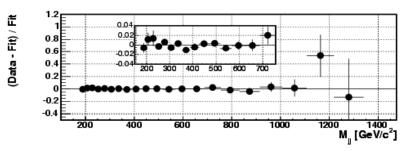
Search for High Mass e⁺e⁻ Resonance

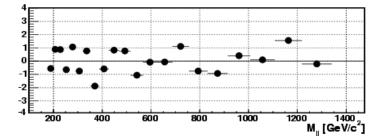

- Set mass limits on RS graviton and Z's from E₆
 - □ SM-like Z': 966 GeV/c²
 - RS graviton with mass below 850 GeV/c² for k/MPI=0.1 is excluded

Signal samples → PYTHIA, k factor = 1.3 applied for NLO corrections


CDF Run II Preliminary

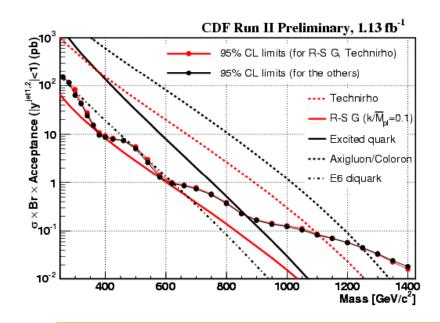


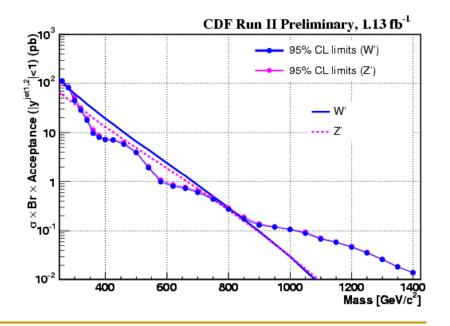

CDF Run II Preliminary



Search for High Mass Di-jet Resonances

- Many Models with new particles decaying into di-jets
 - Axigluons, excited quarks, W'and Z', di-quarks in E₆, RS gravitons, etc.
 - Use PYTHIA Tune A for signal samples (k=1.3)
 - SM couplings for W'/Z'
 - k/Mpl=0.1 for R-S graviton
- Use events with N_{jet}≥2, |y|<1.0, M_{ii}>180 GeV/c²
 - Fit mass spectrum by smooth function
 - test with Herwig, Pythia, and NLOJET++
 - look for excess over fit function





Search for High Mass Di-jet Resonances

- No excess observed
 - Set 95% CL limits
 - World best limits

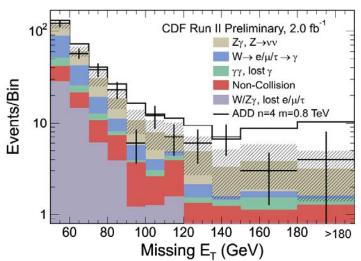
	Observed mass exclusion	Model	
•	260-870 GeV/c ²	Excited quark	
	260-1110 GeV/c ²	Color-octet technirho	
	260-1250 GeV/c ²	Axigluon & coloron	
	260-630 GeV/c ²	E6 diquark	
	260-840 GeV/c ²	W' (SM couplings)	
	260-740 GeV/c ²	Z' (SM couplings)	

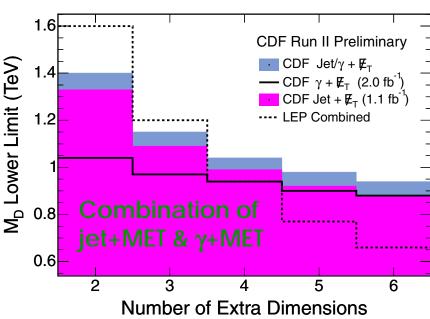
Single γ + Missing E_T

 Compactified LED models predict direct production of Gravitons:

 $qq \rightarrow \gamma G_{kk}$ (also MET+jet $qq \rightarrow gG_{kk}, qg \rightarrow qG_{kk}, gg \rightarrow gG_{kk}$) (signal simulated with PYTHIA 6.216)

- Event selection:
 - $|\eta_{\gamma}| < 1.0;$
 - \Box $E_T(\gamma)$ & MET>50 GeV;
 - no jet with $E_T > 15$ GeV;
 - \Box no trk with $P_T > 10$ GeV.

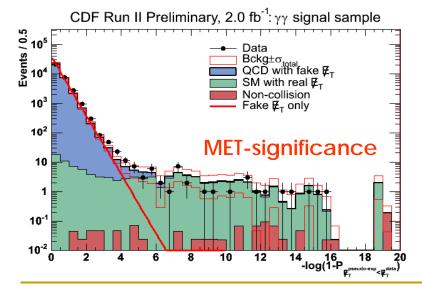

Optimization for Large Extra Dimension signature:


 $E_T(\gamma) > 90 \text{ GeV}$

n 4		1		
NΛ	aı	\mathbf{r}	n	kg:
IVI	a	OI.	$\mathbf{\omega}$	NU.

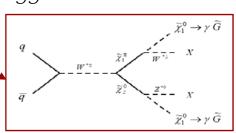
- $Z \gamma \rightarrow (vv)\gamma$ (MADGRAPH)
- Non collision bkg
- Fake (I/jet $\rightarrow \gamma$)
 Both from Data

CDF RunII Preliminary, 2.0 fb^{-1}				
Channel	, -	$\gamma E_T > 90 \text{ GeV}$		
$W \to e \to \gamma$	47.3 ± 5.1	2.6 ± 0.4		
$W \to \mu/\tau \to \gamma$	19.1 ± 4.2	1.0 ± 0.2		
$W\gamma \to \mu\gamma \to \gamma$	33.1 ± 10.2	1.7 ± 1.2		
$W\gamma \to e\gamma \to \gamma$	8.0 ± 3.0	0.8 ± 0.7		
$W\gamma \to \tau\gamma \to \gamma$	17.6 ± 1.6	2.5 ± 0.2		
$\gamma\gamma \rightarrow \gamma$	18.9 ± 2.3	2.3 ± 0.6		
cosmics	36.4 ± 2.5	9.8 ± 1.3		
$Z\gamma \to \nu\nu\gamma$	99.7 ± 9.5	25.2 ± 2.8		
Total	280.1 ± 15.7	46.7 ± 3.0		
Data	280	40		

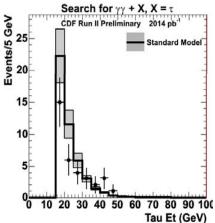


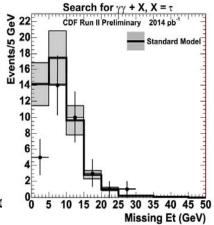
 $\gamma\gamma + X$

• $\gamma\gamma$ +X where X can be **missing** E_T , a **lepton** or a third photon


X = Missing Transverse Energy

- $|\eta_{\gamma_{1,2}}| < 1.0$; $E_T(\gamma_{1,2}) > 13$ GeV
- Data driven background estimate
 - "MET Resolution Model" to predict fake E_T and select events based on ME_T-significance
 - MET-significance measurement based on jet
 + unclustered energy resolution
- Two control regions : $Z \rightarrow e^+e^-$; non-ISO $\gamma \gamma$


Many models to interpret results!


- -Fermiophobic Higgs
- -Technicolor
- -GMSB

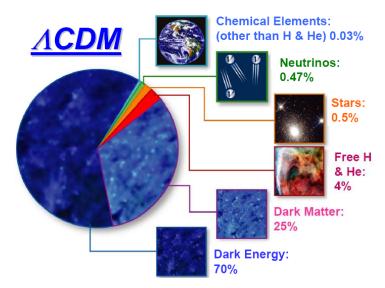
X = tau lepton

- $|\eta_{\gamma_{1,2}}| < 1.0$; $E_T(\gamma_{1,2}) > 13$ GeV
- Tau visible mass >1.8 GeV
- 1 or 3 tracks in 10° cone
- Data driven bkg estimate (fake τ)
- Real τ from Wγ and Zγ: MadGraph

Conclusions

- CDF has a wide and rich program of searches for physics beyond the Standard Model
- Some of the most recent results (1-2 fb⁻¹) have been presented
- No evidence of new physics yet ..
- Major challenges in BSM searches:
 - understand SM background processes

The Standard Model


- Matter is made out of fermions:
 - 3 generations of quarks and leptons
- Forces are carried by Bosons:
 - Electroweak: γ,W,Z
 - Strong: gluons
- Higgs boson:
 - □ Gives mass to particles → Not found yet

Three Generations of Matter

Higgs

Remarkably successful description of known phenomena but ...

The Standard Model is theoretically incomplete

- Mass hierarchy problem
- radiative correction in Higgs sector
- Unification
- Dark Matter
- Matter-antimatter asymmetry

The Hierarchy problem

The SM requires a non-vanishing VEV for the Higgs at the minimum of the potential V

$$V = m_H^2 |H|^2 + \lambda |H|^4$$

if
$$m_H^2 < 0$$
, VEV results in:

$$\langle H \rangle = \sqrt{-m_H^2/2\lambda}$$

Experimentally, $\langle H \rangle = 174 \text{ GeV}$ and $m_H^2 \sim -(100 \text{ GeV})^2$

+ quantum corrections from virtual effects of particles coupling to Higgs field

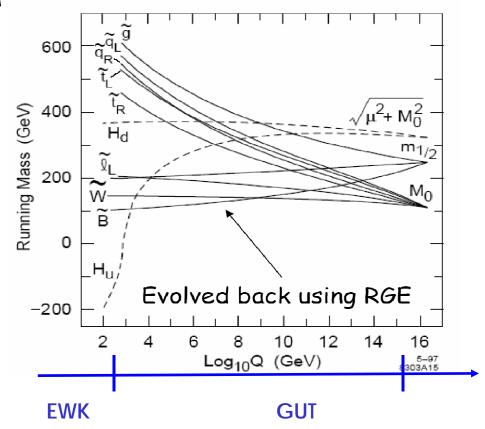
$$\Delta m_H^2 = \frac{|\lambda_f|^2}{16\pi^2} \left[-2\Lambda_{\rm UV}^2 + \sin^2 \ln(\Lambda_{\rm UV}/m_f) + \ldots \right]$$
 Fermion loop

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln(\Lambda_{\rm UV}/m_S) + \ldots \right] - \frac{\rm S}{\rm loop~of~scalar~}$$

 $\Lambda_{\text{UV}} \rightarrow \text{ultraviolet cutoff}$

Mass of Higgs scalar with quantum corrections is kept small only with fine tuning of the parameters!

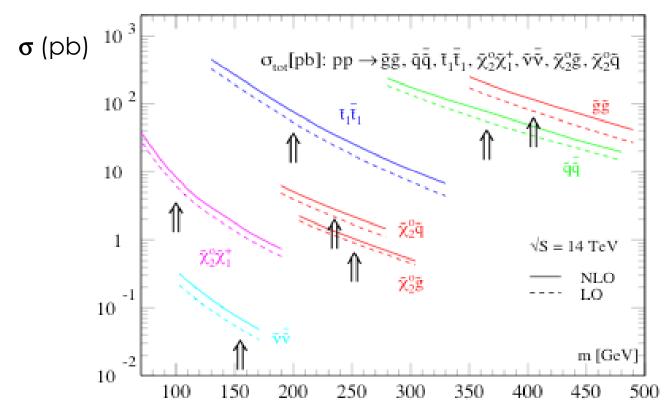
Possible solution: introduce a symmetry to cancel all dangerous contributions

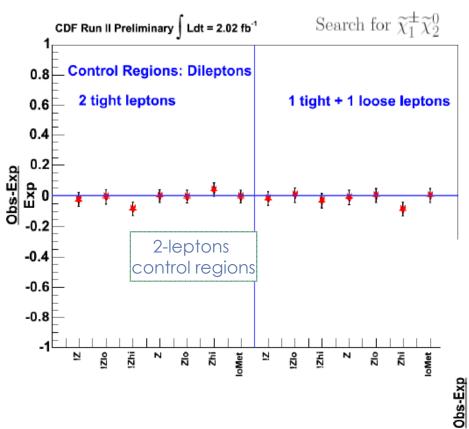

mSUGRA

- New superfields in "hidden" sector
- Interact gravitationally with MSSM
- Soft SUSY breaking

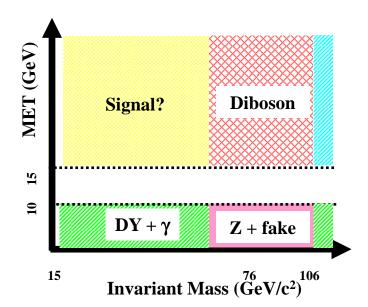
5 parameters at GUT scale

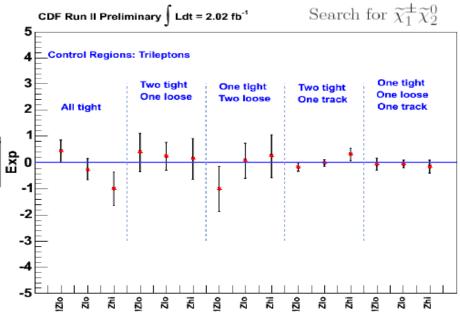
- 1. Unified gaugino mass $m_{1/2}$
- 2. Unified scalar mass m₀
- 3. Ratio of H_1 , H_2 vevs $tan\beta$
- 4. Trilinear coupling A₀
- 5. Higgs mass term $sgn(\mu)$


In R parity conservation scenario, the LSP is the neutralino (χ^0_1)


LHC mSUGRA cross sections

- Strongly interacting particles
- High cross sections for gluinos and squarks production
- → Golden signature!


T. Plehn, PROSPINO



Control regions

Fake rate estimation for trilepton analysis

- Hadrons (\hat{h}) misidentified as tight/loose leptons or T_{τ} (fakes)
- Three lepton final state:
 - \blacksquare Fake rate $\mathcal{P}_{|}(h \rightarrow \mathsf{II}, \mathsf{II})$ measured in data
 - $extbf{u}$ Data driven estimate events with II+ \hbar scaled by fake rate \mathcal{P}_{I}
- Dilepton + isolated track final state:
 - $\ \square$ Fake rate $\mathcal{P}_{\rm T}(\hbox{\it h}{\to}{\rm T}_{\rm \tau})$ measured in data as a function of event track multiplicity

Systematic uncertainties for squark/gluino search

Signal & Background → 3% variation in Jet Energy Scale (JES)

→ 6% uncertainty on luminosity

- PDF: CTEQ6.1M. Use Hessian method to determine systematic uncertainties.
- Renormalization scale:

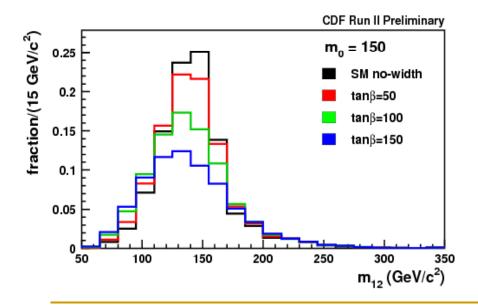
Default:

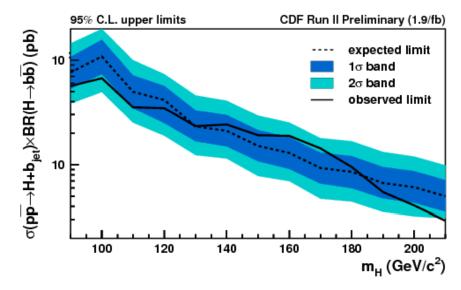
$$-\widetilde{g}\widetilde{g}$$
: $\mu = M_{\widetilde{g}}$

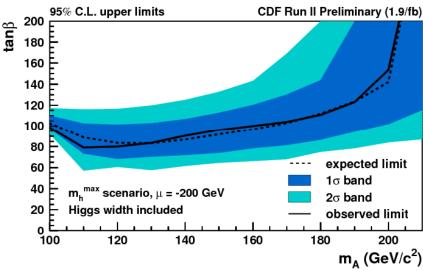
$$-\widetilde{sg}$$
: $\mu = 0.5[M_{\widetilde{a}} + M_{\widetilde{a}}]$

-
$$\tilde{s}\tilde{s}$$
 and $\tilde{s}\tilde{b}$: $\mu = M_{\sigma}$

Nominal PROSPINO scale shifted to $\frac{1}{2}$ and 2 μ .

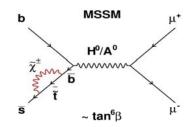

□ ISR/FSR:


• increased/decreased via variation of Λ_{QCD}


- ISR/FSR in top and Boson+jets production
 - Most sensitive in tails at high H_T
 - For top bkg, also consider 10% uncertainty on PDF and renormalization
- 2% global uncertainty on inclusive
 W/Z cross section used to normalize
 W/Z+jets cross section
- 10% PDF + Renormalization
 uncertainty on diboson cross section
- Uncertainty on QCD normalization negligible (< 1%)

MSSM limits for 3b-Higgs search

- From limits on σ x BR to Interpret results in MSSM scenarios:
 - Include non-negligible Higgs width (~20% for tanb = 100)
 - Lose sensitivity and yield
 - limits worsen considerably
- Pest limits obtained in scenarios with μ <0 (loop enhancements)



$B_s \rightarrow \mu\mu$

Sensitive to new physics: if no observation, it can strongly constraint SUSY models

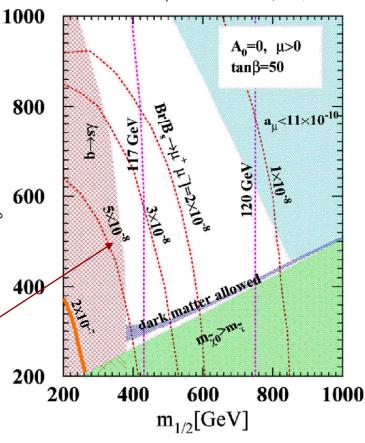
SM prediction: BR = 3.42×10^{-9}

SUSY enhancement \sim (tanβ)6

- Extract signal with Neural Net based discrimina and B_d considered separately:

 µ 3 obser

B_s and B_d considered separately:


Bs-μμ 3 observed events (3.6+/-0.3 exp.bkg.)

Bd→μμ 6 observed events (4.3+/-0.3 exp.bkg.)

No significant excess → exclusion limit

Br(
$$B_s \rightarrow \mu\mu$$
)<5.8×10⁻⁸ @ 95% CL
Br($B_d \rightarrow \mu\mu$)<1.8×10⁻⁸ @ 95%CL

mSUGRA at $\tan \beta = 50$ Arnowitt, Dutta, et al., PLB 538 (2002) 121

