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Highly Boosted Tops

•Interested in highly boosted tops from s-channel decay 

(for New Physics):

•Focus mostly on the hadronic top (BR = 2/3)

•Challenges: decay products of highly boosted top will 

be highly collimated (high PT = small ΔR):

- For  ΔR < Rmin ~0.4, cannot distinguish individual jets

pp→ X → t Ypp→ X → t t̄

ΔR ~ 2 mt/PT

(hadronic calorimeter cell size : Δη × Δφ~0.1 × 0.1 ) 

t→ b W → b j j
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Highly Boosted Tops

•ΔR  decreases as pT 

increases

•For Small ΔR:

-  Usual criteria for 
top-tagging no 
longer work!
(reconstructing W, then 
obtaining top) 

- Can we us a single 
Jet Mass to identify 
top?

L. Fitzpatrick, J. Kaplan, L. Randall, L. Wang

K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez, J. Virz
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Highly boosted hadronic 
top quarks

MC generation
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Highly Boosted Top Quarks

•b-tagging efficiency for highly boosted tops is wired 
(small ~20%)

•top quark radiation is another problem for top-jet mass 
distribution

- not implemented in LO MC tools

- order one effect ~

•Jet-broadening at the detector level is also important

•Choosing an optimal cone size can be biased for parity-
violating top production: (see later)

αs log2( PT
mT

)

L. March, E. Ros, B. Salvachúa

L. March, E. Ros, S. G. d.l. Hoz
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Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

PDF

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

PDF

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard

PDF

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

dσ

dm2
J1

∼ J (c)
1 (m2

J1
, pmin

T , · · · )
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (d)
2 (m2

J2
, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

dσ

dm2
J1

∼ J (c)
1 (m2

J1
, pmin

T , · · · )
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (d)
2 (m2

J2
, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

dσ

dm2
J1

∼ J (c)
1 (m2

J1
, pmin

T , · · · )
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (d)
2 (m2

J2
, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

= σ(pmin
T )

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

dσ

dm2
J1

∼ J (c)
1 (m2

J1
, pmin

T , · · · )
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (d)
2 (m2

J2
, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

= σ(pmin
T )

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Typical background for the highly boosted top             
(or other partons)

•Factorization Theorem:

•Simplify:

dσ

dm2
J1

dm2
J2

· · · =
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (c)
1 (m2

J1
, pT , · · · )⊗ J (d)

2 (m2
J2

, pT , · · · )⊗ S(· · · )

dσ

dm2
J1

∼ J (c)
1 (m2

J1
, pmin

T , · · · )
∫

pmin
T

fa ⊗ fb ⊗ dσ̂(pT , · · · )⊗ J (d)
2 (m2

J2
, pT , · · · )⊗ S(· · · )

p
a p

b

J
1

J
2

R2

Hard
perturbative (Born) 
cross-section

PDF Jet function

Soft

= σ(pmin
T )

~1 (contribute at higher order)

7Monday, March 10, 2008



Highly Boosted QCD Jets

•Analytic Prediction:

•Jet Function (for highly collimated jets: R2 < 1)

- J is a normalized probability (jet mass) distribution

- J absorbs collinear enhancements to the outgoing 
particles in the underlying perturbative process

1
σ

dσ

dm2
J1

= JTheory
1

S. D. Ellis, J. Huston, K. Hatakeyama, 
P. Loch, M. Tönnesmann

p
a p

b

J
1

J
2

R2
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Perturbative Calculation
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Highly Boosted QCD Jets

•At Leading Log order, our result is:

S. D. Ellis, J. Huston, K. Hatakeyama, 
P. Loch, M. Tönnesmann

J (c)
1 (m2

J1
, pT , R2)

= −αS(pT )
1

m2
J1

C(c)

π
log

(
m2

J

R2 p2
T

)
exp

{
−αS

C(c)

2 π
log2

(
m2

J

R2 p2
T

)}

p
a p

b

J
1

J
2

R2

L. Almeida, G. Perez, SL, 
G. Sterman,I. Sung, J. Virzi
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Highly Boosted QCD Jets

•At Leading Log order, our result is:
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•Note that at low order, jet function has no dependency 
on pseudo-rapidity
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Highly Boosted QCD Jets

•With a Mass Cut (50 GeV)

! J M"
50 100 150 200 250 300 350

F
ra

c
ti

o
n

 o
f 

E
v
e
n

ts

0

0.02

0.04

0.06

0.08

0.1

Lead C7 Jet

Gluons

Quarks

=500GeV) Gluons
T

J(P

=500GeV) Quarks
T

J(P

 > 500 GeV
T

) P
J

J(MSherpa (CKKW)
Without Detector 
Simulation

10Monday, March 10, 2008



Highly Boosted QCD Jets

•With a Mass Cut (50 GeV)

! J M"
50 100 150 200 250 300 350

F
ra

c
ti

o
n

 o
f 

E
v
e
n

ts

0

0.02

0.04

0.06

0.08

0.1

Lead C7 Jet

Gluons

Quarks

=500GeV) Gluons
T

J(P

=500GeV) Quarks
T

J(P

 > 500 GeV
T

) P
J

J(MSherpa (CKKW)
Without Detector 
Simulation

10Monday, March 10, 2008



Highly Boosted QCD Jets

•With a Mass Cut (50 GeV)

! J M"
50 100 150 200 250 300 350

F
ra

c
ti

o
n

 o
f 

E
v
e
n

ts

0

0.02

0.04

0.06

0.08

0.1

Lead C7 Jet

Gluons

Quarks

=500GeV) Gluons
T

J(P

=500GeV) Quarks
T

J(P

 > 500 GeV
T

) P
J

J(MSherpa (CKKW)
Without Detector 
Simulation

10Monday, March 10, 2008



Highly Boosted QCD Jets

•With a Mass Cut (50 GeV)
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➔ Simple perturbation 
theory captures the main 
feature of jet mass 
distribution for large mj! 
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Highly Boosted QCD Jets

•For Jet mass distribution, pseudo-rapidity dependence 
is negligible 

•For new physics or any non-QCD physics, expect a 
strong pseudo-rapidity dependence 
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Highly Boosted Top Pair Production

•Important discovery channel for new physics:

•Focus on all-hadronic mode (~40%): 

•Decay products are highly collimated

•Examine top-tagging by single jet mass

•Dominant background is the QCD dijet

pp→ X → tt̄

tt̄→WWbb̄→ j1j2j3j4bb̄

U. Baur and L.H. Orr

R. Frederix and F. Maltoni

W. Skiba and David Tucker-Smith
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•Signal(SM top) to background(QCD jet) ratio, before b-
tagging:  S/B~1/65
•One b-tagging is not enough: Need two to get S/B~6    
(with b-tagging efficiency ~20% and fake-b-tagging rate ~1%)

Highly Boosted top quark pair against QCD dijet

Without Detector Simulation

L. March, E. Ros, B. Salvachúa ATL-Phys-PUB-2006-002

Sherpa (CKKW)
Without Detector 
Simulation
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Highly Boosted Top Pair Production

•Uncertainties for the highly boosted tops:

-for highly boosted top jet: b-tagging efficiency is wired 
(~20%)

-fake-b-tagging (~1%) for the QCD jet 
-top quark radiation effect
-jet broadening (detector level) 
-PDF uncertainties

•Study of substructure of top and QCD jet can help 
distinguish top from QCD jet

L. March, E. Ros, B. Salvachúa 
ATL-Phys-PUB-2006-002

J.M. Butterworth, B.E. Cox, J.R. Forshaw
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Top Polarization

•Daughter particles remember top polarization

•For ultra-relativistic top:  helicity=chirality

- Can do polarization analysis like it was done for the 
tau 

- A powerful method already mentioned in Gilad's talk

•We want to use PT to probe top polarization: PT is a 
directly measured quantity (c.f. For polarization method, need to 

use derived quantities with biases, like center of mass boost etc.) 
- Different from spin-spin correlation where you expand in 

s wave (for non-relativistic top)
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Figure 1: Sketches of angular momentum conservation in t→W+b decay in the top rest frame.

Simple (open) arrows denote particle direction of motion (spin). As a massless b-quark must be

left-handed, the rightmost plot is forbidden in the SM at tree level.

resulting angular lepton distributions are therefore very distinct for eachW helicity state.

As it is necessary to know the weak isospin of theW spin analyzer, the charged lepton

is the best choice since u-like jets can not be distinguished experimentally from d-like jets.

Consequently, theW polarization is better measured in dileptonic and semileptonic tt̄ channels

through the distribution of the! angle between the charged lepton direction in theW rest frame

and the W direction in the top quark rest frame. The ! angular distribution is given by the

following expression [6]:

1

N

dN

d cos!
=
3

2

[

F0

(

sin!√
2

)2

+FL

(

1− cos!
2

)2

+FR

(

1+ cos!

2

)2
]

(2)

Its SM expectation is shown in Figure 3. It reflects the superposition of the three terms of

Equation (2), corresponding to the longitudinal (sin!)2, the left-handed (1− cos!)2 and the
right-handed (1+ cos!)2W helicity states. Each term is weighted by the fraction F0, FL or FR
given in Equation (1).

3

Top Polarization
~70%~30%
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resulting angular lepton distributions are therefore very distinct for eachW helicity state.
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Top Polarization

•b quark: 

- back-warded (soft PT) 
for tR

- forwarded (hard PT)    
for tL

•For SM, parity even   
(PT distribution will be 
flat) ➔ look for new 
Physics where parity is 
violated

tR

~70%~30%
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Figure 2: Sketches of the different W+ polarization modes in t →W+b decay and resulting

lepton directions. Simple (open) arrows denote particle direction of motion (spin). ForW−, left
and right-handed components are inverted.
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•for example with the KK gluon, you'll see suddenly only leptons/bs that follows the RH curves
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Example: KK gluon lepton PT is harder near 
the KK gluon plateau

S. L., G. Perez, J. Virzi

A. T. Holloway

Sherpa (CKKW)
Without Detector 
Simulation
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Example: KK gluon lepton PT is harder near 
the KK gluon plateau

S. L., G. Perez, J. Virzi

A. T. Holloway

KK 
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Without Detector 
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Example: KK gluon lepton PT is harder near 
the KK gluon plateau

Also relevant for SUSY:  heavy stop decaying into top and wino

S. L., G. Perez, J. Virzi

A. T. Holloway

KK 
gluon 
bump

Sherpa (CKKW)
Without Detector 
Simulation
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•ΔR difference                   
(charged lepton from 
top decay)

•Average ΔR:                   
0.46 (tL)/ 0.29(tR)

pT(top) > 1TeV MadGraph

Top Polarization
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•ΔR difference                   
(charged lepton from 
top decay)

•Average ΔR:                   
0.46 (tL)/ 0.29(tR)

pT(top) > 1TeV MadGraph
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•ΔR difference                   
(charged lepton from 
top decay)

•Average ΔR:                   
0.46 (tL)/ 0.29(tR)

•For choosing a cone size, can be biased for tR (if cone 
size is small), as the average ΔR is smaller than that of tL

pT(top) > 1TeV MadGraph
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Top Polarization
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•ΔR difference                   
(b quark from top 
decay)

•Average ΔR:                   
0.27 (tL)/ 0.34 (tR)

•For choosing a cone size, can be biased against tR (if 
cone size is small), as the average ΔR is larger than that 
of tL

pT(top) > 1TeV MadGraph
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+
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Top Polarization
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Summary

•Challenges with highly boosted tops; decay products 
are highly collimated

•Identifying top with single jet mass might be a solution; 
need to distinguish top from the QCD Jet

•Have a simple (pseudo-rapidity independent) analytical 
handle from Factorization approach for QCD jet 

•PT of b quark (lepton) can be used to analyze hadronic 
(leptonic) top quark polarization

•Our analysis is equally relevant for highly boosted W, Z 
(because of unitarity bound) and the boosted Higgs
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