

- Littlest Higgs with T-parity
- Implementation of the model into Sherpa
- Phenomenology
- Future Plans

Littlest Higgs model with T-parity

The Littlest Higgs model

- The breaking of the SU(5) global symmetry $\Rightarrow SO(5)$ is parameterized by a non-linear sigma model.
- Σ_0 breaks $[SU(2) \times U(1)]^2 \Rightarrow SU(2)_L \times U(1)_Y$
- The vev $\langle h \rangle = (0, v/\sqrt{2})^T$ breaks $SU(2)_L \times U(1)_Y \Rightarrow U(1)_{EM}$.

$$\Sigma = e^{2i\Pi/f} \Sigma_0 , \qquad \Sigma_0 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
(1)

$$\Pi = \begin{pmatrix} \mathbf{0}_{2\times2} & \frac{h^{\dagger}}{\sqrt{2}} & \phi \\ \frac{h}{\sqrt{2}} & 0 & \frac{h^{*}}{\sqrt{2}} \\ \phi^{\dagger} & \frac{h^{T}}{\sqrt{2}} & \mathbf{0}_{2\times2} \end{pmatrix}$$
(2)

Arkani-Hamed, Cohen, Katz, Nelson hep-ph/0206021

Littlest Higgs model with T-parity

T-parity

- There are strict EWP bounds on the original Littlest Higgs model
 - The scale f is required to be as ~ 5 TeV. [hep-ph/0303236]
 - Reintroduction of a fine-tuning between the cut off scale and the weak scale.
- A new discrete symmetry, called **T**-parity, is introduced. [Cheng and Low]
 - T-parity is a symmetry which exchanges the gauge boson fields of the two gauged $SU(2) \times U(1)$ groups, $[SU(2) \times U(1)]_1 \iff [SU(2) \times U(1)]_2$.
 - Under T-parity SM fields are T-even while the new heavy partners are T-odd. (T-odd partners can only be pair produced)
 - Mixing between the SM gauge bosons, (W^{\pm}, Z, A) , and the heavy gauge bosons, (W_H^{\pm}, Z_H, A_H) is absent. $\Rightarrow f \sim 500$ GeV.
 - A_H , the lightest T-odd Particle(LHT), is a good candidate for cold dark matter. [JHEP 01 (2005) 135]

The event generator: SHERPA

 $[\mathrm{hep-ph}/0311263]$

- Exact matrix elements in the helicity method. [hep-ph/0109036]
- Parton showers matched with hard matrix elements via CKKW. [hep-ph/0109231]
- Hadronization.
- Decays

Littlest Higgs model with T-parity

Particle Mass Spectrum

	$m_H(\text{GeV})$	κ_l	κ_q	$f \; ({\rm GeV})$	$M ({\rm GeV})$	Γ (GeV)
W_H	120	0.5	1.0	500	312.17	0.1451
Z_H					312.17	0.0464
A_H					64.890	stable
u_H					684.78	13.174
d_H					707.11	13.339
e_H					352.55	0.7113
$ u_{e,H}$					342.39	0.4289

```
A new feature in SHERPA is the automatic generation of decay tables for new physics objects.
Decay table for : KK_W_1, total width is now 5.14326 GeV,
   (instead of -1 GeV), calculated by
                                      _____
KK_W_1 -> KK_B1_1 W+ : 0.145178 GeV.
KK_W_1 -> anti-KK_dL_1 u : 0.945125 GeV.
KK_W_1 -> KK_uL_1 anti-d : 1.03635 GeV.
KK_W_1 -> anti-KK_sL_1 c : 0.945025 GeV.
KK_W_1 -> KK_cL_1 anti-s : 1.03635 GeV.
KK_W_1 -> KK_t2_2 anti-b : 1.03523 GeV.
```

Feynman Rules for LHT

- There are several papers for the which the Feynman rules have been presented:
 - "Phenomenology of the Little Higgs Model" [hep-ph/0301040]
 - "Phenomenology of the littlest Higgs model with T-parity" [hep-ph/0411264]
 - "Phenomenology of a littlest Higgs model with T-parity: Including effect of T-odd fermions" [hep-ph/0609179]
- A complete set can be obtained by taking advantage of tools like LanHEP [hep-ph/0208011].

As of today there is no tool that automatically writes model files for Sherpa. However, this will soon change.

Fields in the vertex	Variational derivative of Lagrangian by fields		
$\begin{array}{cccc} A_{H\mu} & A_{H\nu} & W_L^- \rho & W_L^+ \sigma \end{array}$	$-\frac{i \cdot e^2 \cdot s_H^2}{s_w^2} \left(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma} \right)$		
$A_{H\mu} A_{L\nu} W_{H\rho}^- W_{L\sigma}^+$	$\frac{i \cdot e^2 \cdot s_H}{s_w} \left(2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} \right)$		
$A_{H\mu} A_{L\nu} W^+_{H\rho} W^{L\sigma}$	$\frac{i \cdot e^2 \cdot s_H}{s_w} \left(2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} \right)$		
$A_{H\mu} W^{H\nu} W^+_{H\rho} Z_{H\sigma}$	$\frac{i \cdot c_H \cdot e^2 \cdot s_H}{s_w^2} \left(2g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma} \right)$		
$A_{H\mu} W^{H\nu} W^+_{L\rho} Z_{L\sigma}$	$\frac{i \cdot c_w \cdot e^2 \cdot s_H}{s_w^2} \left(2g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma} \right)$		

In the mean time, you build the model files by hand.

Doing LHT Phenomenology with Sherpa: monojets

- Cross sections for TOQ pair production can be as large at 100 pb and lead to dijet plus missing E_T signatures [PRD **75**, 092701(R) (2007)]
- Why not monojets plus missing E_T ? (See hep-ex/0005033)

 $pp \to q_H A_H \to q A_H A_H$

Future Plans

- Implement several models for the top sector in LHT.
- Implement T-parity violating interactions, i.e., $A_H \rightarrow VV$. (see arXiv:0705.0697, arXiv:0707.3648)
- Use Sherpa to study other new physics models.