

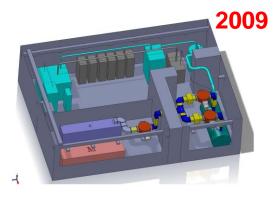
Uppsala Plans and Activities Towards Future FELs

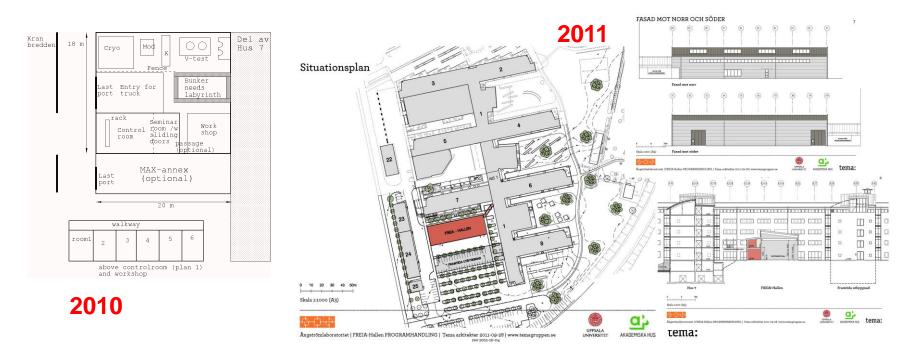
Roger Ruber, Volker Ziemann and Tord Ekelöf for the Uppsala Accelerator Group & FREIA

20 September 2013, CERN Workshop on Use of CLIC Technology for FELs

Accelerator Physics at Uppsala University

- Old university (1477) with 40'000 students
- Gustaf Werner Inst./The Svedberg Lab.
 - Cyclotron (since 1948)
 - proton therapy (since 1950s) \rightarrow Skandion clinic
 - CELSIUS cooler ring (1984 2006)
- Electron-positron linear collider development
 - CERN projects CTF3/CLIC & NorduCLIC
 - Two-beam Test Stand & RF breakdown issues
 - EU FP6-EuroTeV, FP7-EuCARD, FP7-TIARA
- Free electron laser development
 - DESY FLASH Optical Replica Synthesizer,
 - European XFEL Laser Heater
 - Stockholm-Uppsala FEL Centrum
- European Spallation Source development
 - microwave power systems
 - accelerating cavity & cryostat prototyping
 - cryomodule series acceptance testing




Several circumstances

- ESS test stand requires space and bunker
- CELSIUS accelerator hall already re-assigned

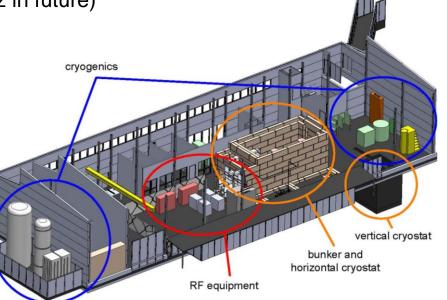
Decision on new construction at Ångström (2010)

• funding support from KAWS, government and university

The New FREIA Laboratory

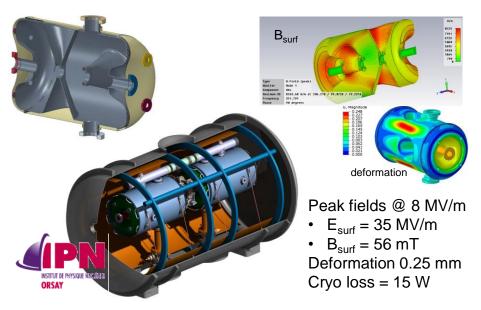
20-Sep-2013 CLIC Technology for FELs - Roger Ruber - Uppsala Plans

What FREIA?



Facility for Research Instrumentation and Accelerator Development

- General Infrastructure
 - liquid helium, nitrogen production & distribution
 - specialized workshop, control room
 - concrete bunkers
- Accelerator & General Test Stands
 - horizontal test cryostat (vertical in future)
 - power sources: 352 MHz (704 MHz, 12 GHz in future)
- Neutron Generator
 - neutron tomography, detector tests
 - student exercises and projects



ESS Accelerator

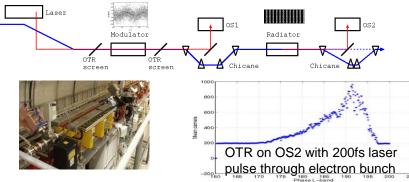
High power system test of source, spoke cavity and cryostat-module

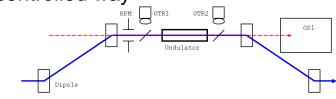

- high power soak testing of power source, controls, amplitude and phase stability with accelerating cavity
- test cavity tuning system, dynamic load, electron emission and multipactoring

Neutron Generator

Access to neutrons

- neutron tomography and detector tests
- student exercises and projects
- physics experiments in combination with solid-state based gamma-detector
 - nuclear fission
 - activation analysis

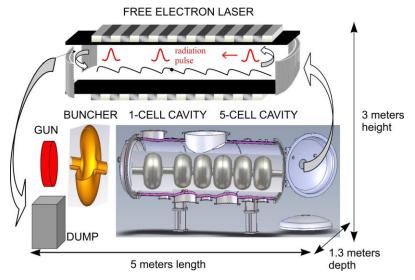



Optical Replica Synthesizer

- measure ultra-short bunches (fs range)
- too fast for electronics, but can be done with optics (FROG)

Laser Heater for XFEL

- electrons are born very cold (3keV)
 → susceptible to plasma oscillation
 instabilities
- add Landau damping (decoherence) in a well controlled way



THz FEL

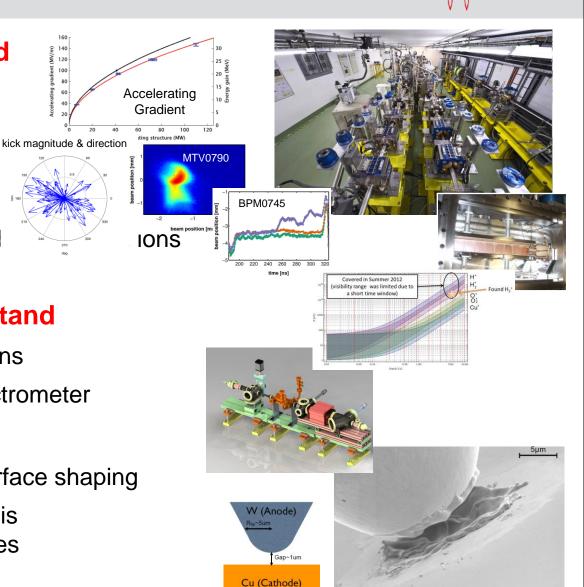
• THz radiation non-ionizing, strongly absorbed by water

Biology and Material Science

- imaging & spectroscopy for biological tissues, proteins, molecular and material science
- extends existing efforts by the Microwave group

20-Sep-2013

CTF3 Two-beam Test Stand

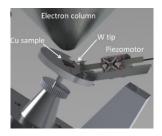

- two-beam acceleration
 - up to 140 MV/m
- effects of RF breakdown
 - possible beam kick
- Flashbox for studies of ejected
 - found H_2^+ ions

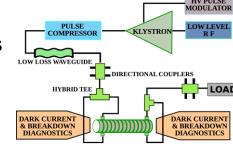
CTF3 Xbox / 12 GHz Test Stand

- study of ejected electrons & ions
- · preparing pepperpot with spectrometer

Discharges in SEM

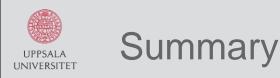
- focused ion beam (FIB) for surface shaping
- electrical and structural analysis of field emission and discharges




SIGURD High Gradient RF research

Set-up and Instrumentation for GHz Research and Development

- scientific aims:
 - technology development for efficient and compact accelerators
- · combine RF and SEM studies on one site
 - X-band test stand at FREIA for
 - breakdown detection
 - vacuum breakdown pattern, rate, relation to gradient, memory effects
 - · location of breakdown site
 - pulse heating, plasma formation, dark currents, breakdown currents
 - instrumentation for
 - electron and ion currents, X-ray,
 - light: plasma and dynamic vacuum diagnostics
 - SEM at Microstructure Laboratory for
 - post-mortem analysis of structures
 - surface analysis, feedback on construction and preparation
- link to theory developments (Helsinki University)


Why SIGURD?

Technology development for compact & efficient future accelerators

- particle collider: participation in CLIC/CTF3
- proton therapy: collaboration with TERA, Uppsala has a long history and presently constructing specialized Skandion clinic
- FEL: strong interest from MAXIab (Lund) and Stockholm-Uppsala FEL center
 - MAX IV:
 - S-band injector linac, to be extended to 5-6 GeV range
 - X-band extension option if beneficial (physics, costs, space, reliability) but no plans to replace entire linac
 - Stockholm-Uppsala centre for FEL research
 - coordinates contributions to XFEL
 - studies implementation of a local FEL

- FREIA laboratory enables
 - accelerator R&D for medical and research purposes,
 - neutrons for physics, biology and material science
- FREIA opens new opportunities for unique scientific projects in Uppsala
 - access to technology and experience for future FEL in Sweden (Lund or Stockholm-Uppsala region) either superconducting and normal conducting
- Planned FEL projects
 - SIGURD test stand for X-band structure optimization

Thanks to university, faculty, physics & astronomy department and the FREIA team.