

Future interests on high gradients at FERMI@Elettra FEL

Gerardo D'Auria Elettra - Sincrotrone Trieste

GdA_Workshop - Use of the CLIC Technology fo FELs - CERN 20 September 2013

- FERMI@Elettra is a seeded FEL Facility under commissioning at the Elettra Sincrotrone Trieste Laboratory.
- It operates in the ultraviolet and soft x-ray range, providing fully coherent ultra short photon pulses (10-100 fs).
- The machine is based on a normal conducting linac operating up to 1.5 GeV.
- With the present layout FERMI is expected to reach a wavelength of 4 nm. An extension of its wavelength capabilities (down to 1 nm or lower), is very attractive for the Users Community.
- To reach the above mentioned wavelength region, it would be necessary to increase the electron beam energy up to 3 GeV or more. Considering the limited space available in the machine tunnel, the use of very high gradient structures is mandatory.

FEL scaling laws

- Resonance condition $\lambda_{\rm L} = \frac{\lambda_{\rm Ind}}{2\gamma^2} \left(1 + \frac{{\rm K}^2}{2} \right)$

----- Emittance condition $\epsilon_n/\gamma \le \lambda_L/4\pi$

GdA_Workshop - Use of the CLIC Technology fo FELs - CERN 20 September 2013

Present layout and proposed energy upgrade

Preliminary evaluations

A. Grudiev

Parameter	Small Aperture	Middle aperture	
Energy gain (GeV)	2.4		
Active length (m)	40		
Aperture (mm)	2.95	3.62	
Structure length (m)	0.833	1.0	
Accelerating gradient (MV/m)	6	60	
No. of structures	48	40	
RF power (MW)	322	401	
No. of klystrons	8	10	

Estimated costs 16/17.5 M€

Prepare a preliminary design of the machine starting from:

• the new FEL parameters, layout, wavelength range and expected performance (choices and assessments that are Users driven).

Then:

- define the linac working point, maximizing the beam brightness keeping the collective effects under control;
- design an accelerating structure unit that minimizes the project costs, in terms of number of RF plants, for reaching the target energy;
- confirm the structure design parameters with high power RF tests performed with an X-band test station on prototypes.

- The test station can use the XL5 spare klystron already at Elettra since August 2012. Note that a periodical check and operation of the tube is also suggested by SLAC.
- ➤ Equipped with a proper RF compressor, with ≤ 35 MW from the klystron, the station would deliver more than 80-90 MW at the load input.
- At these power levels, it would be possible to extensively test X-band structures and modules, obtaining the optimal choice for the FERMI energy upgrade.
- The station could also be used for the CLIC high gradient structures test program, giving the opportunity to continue to acquire experience and know-how at 12 GHz.

X-band test station layout

HV modulator layout

- An important development for the FERMI@Elettra FEL facility would be the estension of its capabilities in terms of shorter wavelengths.
- This requires an extension of the linac energy up to
 3.0 GeV.
- Considering the limited space available in the present machine tunnel, the use of very high gradient structures is mandatory.
- To further explore this possibility, validating the machine layout and the component design, the assembly of a X band testing station is under evaluation.