HP-PS circumference

The aim is to optimize the HP-PS circumference in order to improve synchronization in case of injection into SPS.

The present ratio between SPS and HP-PS is 5.88.

If we assume 25 ns beam the present harmonic number of SPS is 924 . The idea is to find a ratio which is an integer or a ratio of integers.

25 ns beam leads to a revolution period of 3.85μ s then circumference of 1152 m .

FT beam assuming MTE extraction.

In this case the SPS extraction kicker gap (1.1 $\mu \mathrm{s}$) must be taken into account in the HPPS beam structure which will be, at HPPS extraction : $3.85 \mu \mathrm{~s}=2.75 \mu \mathrm{~s}+1.1 \mu \mathrm{~s}$.
$2.75 \mu \mathrm{~s}$ corresponds to 70% of HPPS circumference, so $h_{\text {HPPS }}=110$ and $2.5^{*} 10^{14} / 110$ $=2.27^{*} 10^{12} \mathrm{ppb}$ in the HPPS.

If we assume 5 -turn MTE extraction we obtain : $2.27^{*} 10^{12} / 5=4.54^{*} 10^{11} \mathrm{ppb}$ in the SPS.

This is already higher than the maximum intensity which can be accepted by the SPS $\left(2.5^{*} 10^{11} \mathrm{ppb}\right)$ so it must be decreased.
$5 * 2.75 \mu \mathrm{~s}=13.75 \mu \mathrm{~s}=59.5 \%$ of SPS full of beam.

25 ns beam leads to a revolution period of $4.19 \mu \mathrm{~s}$ then circumference of 1256.63 m .

FT beam assuming MTE extraction.

In this case the SPS extraction kicker gap (1.1 $\mu \mathrm{s}$) must be taken into account in the HPPS beam structure which will be, at HPPS extraction : $4.19 \mu \mathrm{~s}=3.09 \mu \mathrm{~s}+1.1 \mu \mathrm{~s}$.
$3.09 \mu \mathrm{~s}$ corresponds to 70% of HPPS circumference, so $h_{\text {HPPS }}=124$ and $2.5^{*} 10^{14} / 124$ $=2.1^{*} 10^{12} \mathrm{ppb}$ in the HPPS.

If we assume 5 -turn MTE extraction we obtain : $2.1^{*} 10^{12} / 5=4.03^{*} 10^{11} \mathrm{ppb}$ in the SPS.

This is already higher than the maximum intensity which can be accepted by the SPS $\left(2.5^{*} 10^{11} \mathrm{ppb}\right)$ so it must be decreased.
$5^{*} 3.09 \mu \mathrm{~s}=15.45 \mu \mathrm{~s}=67 \%$ of SPS full of beam.

