ArcPIC status Kyrre N. Sjøbæk 26/8/2013 (update 2/9/2013)

Outline

- PIC & field emission
 - See separate presentation
- Heatspike yield & threshold
- Field movie
- Particle weight scan
- Evaporation scan
- Model refinements
- Other stuff

Heatspike yield & threshold

- Ran the new model ("NewHS-modelC") many times to find the minimum yield and heatspike threshold sufficient for a "runaway" breakdown
- Results on next slide:
 - Number = time in ns until "breakaway" from zero-heatspike ion number curve
 - **Red**: Rapid runaway
 - Yellow: Runaway but was able to follow for some time
 - Green: No significant difference from no-heatspike curve

Threshold [particles / cm ² / s]									
Y		1.0E+25	2.0E+25	3.0E+25	4.0E+25	5.0E+25	5.5E+25	6.0E+25	7.0E+25
	1		0.570	inf					
	5		0.570	0.603	inf				
	10				0.666	inf			
	15					inf			
	25				0.598	0.720			
	50			0.575		0.630	inf	inf	
	75							inf	
	85							inf	
	90							0.655	
	95							0.589	
	100	0.480	0.500	0.574		0.587		0.630	inf
	250	0.486							
	500	0.485							
	850	0.480	0.490	0.571		0.572		0.577	inf
	1000								
	1500								inf

Heatspike yield & threshold: all runs

Heatspike yield & threshold: all runs

Heatspike threshold = 1e25 ions/cm²/s

Heatspike threshold = 2e25 ions/cm²/s

Heatspike threshold = 3e25 ions/cm²/s

Heatspike threshold = 4e25 ions/cm²/s

Heatspike threshold = 5e25 ions/cm²/s

Heatspike threshold = 5.5e25 ions/cm²/s

Heatspike threshold = 6e25 ions/cm²/s

Heatspike threshold = 7e25 ions/cm²/s

Heatspike yield & threshold: conclusions

- Most impactors have low energy =>Y < 1
- Increasing neutral population necessary for neutral population growth
- Some is provided by evaporation (Lotta's expanding run from last year)
- Heatspike, even with Y=1 (given low-enough threshold), provides enough neutrals

Field movie

Particle weight scan

- Ran simulations with different particle weights
- Nsp = n_ref*Ldb^3/Ndb
 - Ndb = 1500 (standard)
 -> Nsp = 21.35
 - Ndb = 3000
 -> Nsp = 10.67
 - Ndb = 6000
 -> Nsp = 5.34

Particle weight scan

- Convergence seems OK
- Have to confirm that slow-pulsing frequency is the same

Evaporation scan

- Tried to change neutral evaporation ratio from 0.015 to 0.010 and 0.005*
- 0.010 also broke down, but it took longer
 - Heatspikes OFF
- 0.005 didn't break down
 - New model

Model refinements

- Flat surface emission:
 - May start as Remission OR Remission_theor
 - Separate evaporation ratio
 - Evaporation located at flat surface, not at tip
 - Uniform injection
- More output separately specify
 - emitted_flat
 - emitted_SEY
 - emitted_evap
 - emitted_sputter_cat
 - emitted_sputter_ano
 - emitted_heatspike

 Need to understand why I don't reproduce old results exactly in the beginning (no flat surface interaction)

Other stuff

- Helsingfors/Helsinki summer student Miika Haataja
 - Field emission + space charge benchmark
 - Neutrals-in-gap without evaporation
 - Presented work Monday 26/8
 - Will produce report this week
- Increased current after breakdown may be due to SEY, not flat emission
 - SEY for low energy ions < 0.5...

Harddrives "humongous1" and "humongous2" (2x 2 TB) for local scratch space (USB drives are cheap, local, and unbureaucratic..)