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A continuous self-maintaining electric discharge between two electrodes in a

vacuum.

Arc formation
@ Field emission of electrons + evaporation of neutrals = ionization
@ Sudden avalanche of ionization
@ Formation of plasma and plasma sheath
@ Self-maintaining "burning” of plasma (while energy is available)
@ Neutrals fill entire gap
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The Compact Linear Collider (CLIC)
@ Reducing size reduces cost
o Compactness requires high accelerating gradients (100 MV/m)
o Efficiency relies on low breakdown probability
°

Lowering the breakdown rate also lowers operating costs

http:/ /irfu.cea.fr

CLIC accelerating structure (length 300 mm)




2D Arc-PIC code (orig. by Helga Timkd)

@ 2d3v electrostatic PIC code with External RC circuit

cylindrical symmetry o Capacitor's potential

o Particles: e=, Cu and Cu™ drained by arc current
@ Monte Carlo collision routines

@ lonization through impacts: ext
e” + Cu— 2 + Cut

Emission models

@ Fowler-Nordheim field emission
(field enhancement factor 3)

\ Cathode

@ Cu evaporation as a fraction of e~ emission

@ Sputtering (experimental, Yamamura &

Tawara ) Rest of surface . )
low B Emitter with

@ Heat spike sputtering (MD, Timké et.al) high 8

@ Secondary electron yield (constant)
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Typical simulation
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Field emission

Fowler-Nordheim field emission (Wang & Loew approximation)

Jpn = 4.7133 - 10°E2 _ - exp(—92:228)

loc

[JFN] = A/cm2 [Eloc] = GV/m

Code-to-code comparisons - Species: e, time = 0.0010 [ns] o

@ Can increase confidence in results 10

@ Help in finding problems in code v

10"

@ Do not prove if solution is correct

107

10"

r[um]

10"

Simple field emission test
@ Only electrons o
@ All interactions switched off "

10"

o Emitter radius 6 pm

10"
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Space charge

@ Particle interactions switched back on

@ How does space charge limit the current density?

Child-Langmuir Law

Jo = 4% 2e/me%/2

V = voltage over gap

d = gap distance 20 pym
Gives the maximum space

charge limited current density
(with certain assumptions).
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Space charge

@ Space charge begins to have effect when Fowler-Nordheim emission reaches
Child-Langmuir Law
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Space charge

Assumptions:
Q@ Only electrons v
@ Current limited by space charge
© Planar, parallel electrodes of infinite dimension X
@ Zero velocity at cathode surface ~ v/

@ Electrons travel ballistically (no scattering) X

Dispersion greater with smaller emitters. Collisions not significant.
6.0 pm 3.0 um 0.5 pym 0.1 pm

Spocies: o
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Distribution of neutrals

o Initial distribution of neutrals in the gap
@ No evaporation of neutrals
Results
@ Only the distribution right in front of the emitter has significance
@ Breakdown current reached only briefly (even with high densities)
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Distribution of neutrals
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Distribution of neutrals
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