TDI redesign: materials, beam parameters and impact scenarios

A. Lechner and N.V. Shetty (on behalf of the FLUKA team) with input from A. Bertarelli, F. Maciariello, A. Perillo Marcone, A. Mereghetti, C. Maglioni, B. Goddard, ...

TDI upgrade meeting Dec 12^{th} , 2012

< □ > < 同 > < 回 > .

Dec 12th 2012

1/4

Updated material list

Material	Chem. F.	Density	Used in device	λ				
Graphite and carbon compounds								
CfC (low density)	С	1.4 g/cm ³	TCDS, TDE	58.2 cm				
AC150 C/C	С	1.65 g/cm ³	TCLIB, TCSG, TCP	49.4 cm				
CfC (high density)	С	$>1.7 \text{ g/cm}^{3}$	TCDS, TDE, TPSG	<48.0 cm				
Graphite	С	>1.77 g/cm ³	TCDQ, TCDS, TPSG, TED, TCDI, TCLIA	<46.1 cm				
Boron compounds								
Boron nitride (BN5000)	BN	1.92 g/cm ³	TDI	42.9 cm				
Boron nitride	BN	2.21 g/cm ³	-	37.3 cm				
Boron carbide	B ₄ C	2.50 g/cm ³	-	31.6 cm				
Silicon compounds								
Silicon carbide	SiC	3.16 g/cm ³	-	30.3 cm				
Silicon nitride	Si ₃ N ₄	3.2 g/cm ³	-	29.8 cm				
Aluminium and aluminium compounds								
Aluminium	AI	2.699 g/cm ³	TDI, TED	37.9 cm				
Aluminium nitride	AIN	3.25 g/cm ³	-	29.3 cm				
Alumina	Al ₂ O ₃	3.34/3.76 g/cm ³	-	28.5/25.3 cm				
Copper and copper compounds								
Copper	Cu	8.96 g/cm ³	TDI, TED, TCDD	14.6 cm				
Copper-Diamond Composite	CuB-CD	5.4 g/cm ³	-	19.7 cm				
Glidcop AL-15	CuAl ₂ O ₃	8.9 g/cm ³	-	14.7 cm				
Molybdenum and molybdenum compounds								
Molybdenum	Mo	10.2 g/cm ³	-	14.4 cm				
Moly-Graphite Composite type 2	Mo-GRCF	3.7 g/cm ³	-	31.7 cm				
Moly-Graphite Composite type 1	Mo-GR	5.6 g/cm ³	-	21.9 cm				
Moly-Copper-Diamond Composite	MoCu-CD	6.7 g/cm ³	-	18.4 cm				
Other high-density materials								
Titanium	Ti	4.5 g/cm ³	TCDS, TPSG	26.7 cm				
Inermet 180	WCuNi	18.0 g/cm ³	-	9.7 cm				

Beam parameters and impact scenarios

LIU parameters for 25 nsec (by courtesy of Brennan)

	LIU beta function		€n	I _{bunch} (I _{total})	σ_x^{TDI}	
	@TDI entrance	LIU (nominal)	$1 \ \mu { m m}$	$1.15 \times 10^{11} (3.31 \times 10^{13})$	0.47 mm	
β_X	107.7 m	LIU (maximum)	$2.5~\mu{ m m}$	$2.5 imes 10^{11} (7.20 imes 10^{13})$	0.75 mm	
β_y	47.9 m	Current nominal	$3.75~\mu{ m m}$	$1.15 \times 10^{11} (4.90 \times 10^{13})$	0.90 mm	

Beam impact scenarios

	Full impact (maximum impact parameter)	Grazing			
	(injection timing error)	(MKI erratic, flashover)			
Load on D1 (&triplet)	\bullet Drives $N_\lambda = \sum_i l_i / \lambda$: energy deposition in downstream magnets due to particles escaping downstream TDI surface	• $N_{\lambda} = \sum_{i} l_i / \lambda_i$ not so important if N_{λ} reasonably high (>10): secondary particles escaping from gap between jaws dominate (hadrons)			
	 LIU maximum specs more demanding (due to higher I_{total}; beam size not so important for D1 load) 	\bullet LIU maximum specs more demanding (due to higher $I_{total})$			
	\bullet Functional design requires no damage, but with suffiently large $N_\lambda(\sim\!13\text{-}14?)$ once can stay probably below quench limit	 Quench cannot be avoided, without TCDD prob- ably above damage limit 			
Load on TDI	 Important to consider both LIU specs when as- sessing material blocks: higher energy density in one case, higher gradient in the other 	\bullet Diluted impact on leading blocks: likely less energy density than for full impact case			
		• Direct impact on high-density materials needs to be avoided (offset wrt lighter materials)			

(日)

Open points and outlook

- Collect more ideas on:
 - Number of individual modules
 - more modules better for TDI load as shower opens up, but impedance issues
 - impact on downstream magnets (to be evaluated)
 - Total length on blocks (between 4.2 and 5 m seems logical choice)
 - o Material availability, suitability for vacuum operation
- Material specifications:
 - o Material data for ANSYS calculations is not always available
- Proposed next steps (until next meeting):
 - More (systematic) iterations on energy density calculations (FLUKA) and evaluation of corresponding temperatures and stresses (ANSYS) for different candidate material sandwiches
- Later:
 - Incorporate TDI model in FLUKA beam line and study different impact scenarios (load on D1)
 - At this point, we would need to know impact distributions for different cases (impact parameter, angle, distribution for grazing impact)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣