Aspects of photon production
In heavy-ion collisions
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| ectures

< Lecture #1 (today)

Prompt photon production, from pp to AA collisions

< Lecture #2 (Sun. 15, 12:30pm)

Quark-gluon plasma radiation: thermal photon production
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Outline

< Definition
< Perturbative QCD framework
< Prompt photon production in pp collisions

< Prompt photons in nuclear collisions
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What prompt photons ?

< A definition

Prompt photons are produced by the hard scattering of two incoming
nucleons [hard = w/ large momentum transfer Q > Ay¢p ]

Prompt photons carry large p; > Aqcp = O(1 GeV)

< Physical consequence
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Why bothering about photons ?

< Genuine test of perturbative QCD through a careful comparison
between high-precision data and fixed order (NLO) or resummed
(NLL) calculations

< Interesting constraints on non-perturbative quantities such as
parton distribution functions in a proton (or nucleus)

< Allow for a systematic comparison between different systems to
probe nuclear effects in p—A and A—A collisions

< Crucial reference process for other hard probes (e.g. jets)

< Important QCD background for (B)SM physics, such as Higgs
decay



pQCD calculations
IN a nutshell




Factorization

Cross section = non-perturbative x perturbative physics
< Factorization theorem used as a (solid) working assumption

< Non-perturbative parton distribution functions
= Fitted to DIS and pp data

= Evolution given by perturbative QCD (DGLAP)

< Perturbative QCD amplitudes

= Computed using Feynman diagram techniques
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Diagrammatics

Leading-order contributions O(a ay)

< Compton scattering

NN
q9 — q7
~000000,
< Annihilation process
NN
qq — g7
000000 -

At high energy, only the Compton scattering process is relevant



L
Diagrammatics

Leading-order contributions O(a ay)

< Compton scattering

NN
q9 — q7
~000000,
< Annihilation process
NN
qq — g7
000000 -

At high energy, only the Compton scattering process is relevant

What about higher-order corrections ?
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Diagrammatics

A next-to-leading order contribution O(a a.?)

— 000000~

™
The collinear divergence of this diagram is absorbed into new non-
perturbative objects :

quark/gluon fragmentation into a (collinear) photon



Diagrammatics

A next-to-leading order contribution O(a a.?)

o T

The collinear divergence of this diagram is absorbed into new non-
perturbative objects :

quark/gluon fragmentation into a (collinear) photon

<« The q — q Yy splitting process yields large terms prop. to In(Q/Aqcp)
making fragmentation functions into photons to be O(a/a,)

< The left diagram actually is O(0.?) Dy/k = O(a a,) = LO!



Direct vs. fragmentation

Arbitrary distinction between direct and fragmentation at NLO

Direct NLO Fragmentation LO

Only the sum :

direct + fragmentation

iIs meaningful and does not depend on the arbitrary fragmentation
scale (or ar least hopefully not much)
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Ingredients

At LO accuracy

am as(,Ul) do ..
p— d d 7 ,M . , M ij
dpLd'n | ’_Z_ / I1 dAT2 f/p(wl )fj/p(w2 ) 2w dp, dnp
,7—4,9,9
o dz
z,J,k=q,q,g
2 ~k
U (/.l.) dO'ij
D M
X ( o ) dp_dr v/k(2, M)

« f,, - parton distribution functions (e.g. MSTW, CT10, NNPDF)
“Dyx(z, Mg ): fragmentation functions into photons (e.g. BFG)

+ oy and g;* : LO (NLO) partonic cross sections
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Scales

Diagrammatic calculation depends on the 3 unphysical scales

< Renormalization scale p
= acts on the (running of the) strong coupling constant ag
= due to UV divergence

< Factorization scale M
= acts on the parton distribution functions f,,
= due to initial-state collinear singularities

< Fragmentation scale M,
= acts on the fragmentation functions D,

= due to final-state collinear singularities



e
Scales

Diagrammatic calculation depends on the 3 unphysical scales
< Renormalization scale u
< Factorization scale M
< Fragmentation scale M,
Scale variation at a given order allows
unknown higher-order corrections to be estimated

Usually one takes

1/4-1/2Q S pu~M~Mp $2-4Q Q=0(p1)

Y

(Note: no scale variation in an all-order calculation !)



Prompt photons
In pp collisions




Uncertainties (1/3)

Ratio to NNPDF2.3 NNLO, a; =0.119, Q% = 10° GeV?
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< Parton distribution functions S
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Uncertainties (2/3)

< Fragmentation functions poorly constrained by data
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Uncertainties (2/3)

< Fragmentation functions poorly constrained by data

< Could be accessible through photon—jet measurements
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Scale dependence (3/3)

< Important at leading order

< Rather moderate (few tens of percent) at NLO
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World data

Impressive measurements from fixed-target (WA70, WA98,. . . ) to
collider (ISR, RHIC, Tevatron, LHC) experiments

Ed’c/dp’ pb/GeV?
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[ Aurenche, Fontannaz, Guillet, Pilon, Werlen
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Isolated y production:

x,-scaled cross sections

o ATLAS (pp, V5 =7 ToV, Iy1<0.6) 3 (power-law expo: n=4.5)

® ATLAS (pp, s = 7 TeV, 0.6<lyl<1.37)
® ATLAS (pp, s = 7 TeV, 1.52<lyl<1.81)
® CMS (pp,\/s = 7 TeV, lyl<1.45)
® CMS (pp,\/s =7 TeV, lyl<0.9)
® CMS (pp,\/s =7 TeV, 0.9<lyl<1.44)
® CMS (pp,\s =7 TeV, 1.57<lyl<2.1)
® CMS (pp,\s =7 TeV, 2.1<lyl<2.5)
= CDF (pp,\/s = 1.96 TeV, lyl<1)
+ CDF (pp,\s = 1.8 TeV, lyl<0.9)
+ CDF (pp,\/s = 1.8 TeV, lyl<0.9)
+ CDF (pp,Vs = 1.8 TeV, lyl<0.9)
DO (pp,\/s = 1.96 TeV, lyl<0.9)
- DO (pp,\s = 1.8 TeV, lyl<0.9)
+ DO (pp,\/s = 1.8 TeV, 1.6<lyl<2.5)
* DO (pp,\s = 1.8 TeV, lyl<0.9)
+ DO (pp,\s = 1.8 TeV, 1.6<lyl<2.5)
DO (pp,\'s = 630 TeV, lyl<0.9)
DO (pp,\s = 630 TeV, 1.6<lyl<2.5)
- UA2 (pp,\/s = 630 GeV, lyl<0.76)
CDF (pp,\s = 630 GeV, lyl<0.9)
% UAT1 (pp,\'s = 630 GeV, lyl<0.76)
< UA2 (pp,\'s = 630 GeV, lyl<0.8)
< UA2 (pp,\/s = 630 GeV, 1.<lyl<1.8)
UAT1 (pp,\'s = 630 GeV, 0.8<yl<1.4)
UA1 (pp,\'s = 630 GeV, 1.6<lyl<3)
UAT1 (pp,\s = 546 GeV, lyl<0.8)
UA1 (pp,\s = 546 GeV, 0.8<yl<1.4)
UA1 (pp,\s = 546 GeV, 1.6<lyl<3)
* PHENIX (pp,Vs = 200 GeV, lyl<0.35)
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|solation

Recall that direct and fragmentation components are arbitrary
What is observable and NOT arbitrary are

iInclusive and isolated photons
< Inclusive: no selection on the final-state

< |Isolated: only select y with low hadronic activity around it

= depends on isolation criteria, e.g.
Ehaclronic

Sum

had max
Ehed < E;

Jet

for particles in a cone

(n-ny?+(¢-¢,) <R
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|solation

Recall that direct and fragmentation components are arbitrary
What is observable and NOT arbitrary are

iInclusive and isolated photons
< Inclusive: no selection on the final-state

< |Isolated: only select y with low hadronic activity around it

Experimentally

< Inclusive production measured essentially at fixed-target
experiments and RHIC

< |solated measurements at RHIC, Tevatron, and LHC



Pros and cons

Pros

< Strongly suppress the contribution from hadron (1%, n) decays

< Reduce the sensitivity on the fragmentation functions

cons

<+ Needs a reliable theoretical description of multiple emission
processes

= Sensitive to underlying events
= Beyond the fixed-order calculations

= Interesting developments of Monte Carlo showers matched with NLO
calculations (POWHEG)
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Isolated data vs. theory

Very good description of isolated photon world-data, from fixed
target experiments to Tevatron...
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Isolated data vs. theory

Very good description of isolated photon world-data, from fixed
target experiments to Tevatron... up to the LHC
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Prompt photons
IN nuclear collisions




Prompt photon in heavy ion collisions

First of all
no real predictivity of pQCD in heavy ion collisions !

@ Do not allow one to quantify properly theoretical
uncertainties

= can’t be as quantitative as pp phenomenology

© Rather exploratory

= |lots of activity and new ideas... fun!



Prompt photon in heavy ion collisions

First of all

no real predictivity of pQCD in heavy ion collisions !
... but potentially very useful !

< Probe of nuclear parton distribution functions

< A.good (?) reference for hard processes sensitive to hot medium
effects

< Photon — jet correlations help to constrain parton energy loss in
the medium

Lecture Il by S. Peigné




Nuclear PDF

< Structure functions F, are modified in nuclei

= First observed by the EMC experiment (DIS on nuclei)
= Depends on x and Q2
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Extracting nuclear PDF (nPDF)

< Global fit analyses carried out to extract nuclear parton densities
- EKS98, HKNO04, nDS, EPS09, DSSZ...
= Use mostly DIS & Drell-Yan data (but not photons)
= Large uncertainties at small x where (almost) no data is available yet
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Probing nuclear PDF at LHC

108

2 Jets

= Probes quark and gluon densities 05

photons

3 jets

= High rates i heavy bosons k ]

= Rich phenomenology i NMC @f

- Large scales Q2 > 103 GeV? % wil Q. \\\\\Q %
< Weak bosons and Drell-Yan © ;

- Probe quark densities 102.' ]

- Large scales Q2 > 10* GeV/? B %
< Prompt photons * ‘ ‘ R 7 ‘

= Probes quark and gluon densities 110'6 ‘ 10 s 10~ 19('3 H 10 ;Jo ““““

= Rich phenomenology
= Low Q2 > 10-103 GeV?

Saturation region

Lectures by E. lancu
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Probing nuclear PDF in pA collisions

Simple relationship between R, and nuclear PDF
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Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon—nucleon binary
scaling in heavy-ion collisions

In A—A collisions, one assumes that in absence of nuclear effects

dN

AB

(b) = N (b) x AN

However

< Assumption which needs to be checked using processes insensitive to
medium effects

< The number of collisions not well determined (Glauber model)



Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon—nucleon binary

scaling in heavy-ion collisions

direct y P, spectra
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Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon—nucleon binary
scaling in heavy-ion collisions
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S
Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon—nucleon binary
scaling in heavy-ion collisions

Does this mean that prompt photons

are insensitive to medium effects ?
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Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon—nucleon binary
scaling in heavy-ion collisions

Does this mean that prompt photons

are insensitive to medium effects ?

Bueno, no es muy claro...

A variety of (sometimes contradictory) processes have been
discussed...
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Hot medium effects

< Enhancement of isolated photons in A A collisions from jet —

photon conversion

[ Fries Muller Srivastava nucl-th/0208001, Turbide Gale Jeon Moore hep-ph/0502248 ]
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Hot medium effects

Quarks and gluons propagating through quark-gluon plasma lose
energy by radiating gluons... and possibly photons too

L
E

[Zakharov hep-ph/0405101 ]
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Hot medium effects

Quarks and gluons propagating through quark-gluon plasma lose
energy by radiating gluons... or does it quench fragmentation

f)
photons ] [ Jalilian-Marian Orginos Sarcevic hep-ph/0101041 FA hep-ph/0601075
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Correlation studies

Jet quenching is one of the most spectacular result from heavy-ion
collisions at RHIC and LHC
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D
Correlation studies

Jet quenching is one of the most spectacular result from heavy-ion
collisions at RHIC and LHC

< Parton energy loss is likely responsible for this

< However it is rather difficult to estimate the amount of energy
lost by the propagating partons from single-hadron spectra
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Correlation studies

Jet quenching is one of the most spectacular result from heavy-ion
collisions at RHIC and LHC

< Parton energy loss is likely responsible for this

< However it is rather difficult to estimate the amount of energy
lost by the propagating partons from single-hadron spectra

Need to go beyond single hadron production to better understand
medium modifications of fragmentation processes

Photon — jet and photon — hadron momentum correlations
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Correlation studies

Jet quenching is one of the most spectacular result from heavy-ion
collisions at RHIC and LHC

< Parton energy loss is likely responsible for this
< However it is rather difficult to estimate the amount of energy

lost by the propagating partons from single-hadron spectra

ldea

Use the photon momentum
as a proxy for that of the parton (jet)

v AR



Photon — jet in heavy-ion collisions

< Significant asymmetry reported !

(©) p,>60Gevic mi<i4s §(d)  \5p77ey CMS
py*>30GeVic M™<16 T
s >g 1
10% - 30% |

2,5_....,.. T — T T T T
m pp Data 1 (b) ® PbPb Data
I C_JPYTHIA + HYDJET

2 -
J;15 &“/ 1
z 50% - 100% §
v}z* 3 el E!
: g 1
0'5 N 1
//Af T

"L dt=150ub"

[ CMS, 1205.0206 ]



L
Photon — jet in heavy-ion collisions

< Significant asymmetry reported !

<... but still a lot to be performed before extracting parton energy
loss in the medium
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Summary

< Prompt photons in proton—proton collisions
= Beautiful test of perturbative QCD in hadronic collisions

< Prompt photons in proton—nucleus collisions

= A promising probe of nuclear parton densities

< Prompt photons in heavy—ion collisions

= Seems quite insensitive of medium effects (despite many opposite
suggestions)

= Might be used as a counter of binary nucleon—nucleon collisions

= Interesting correlation measurements to study jet quenching
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Summary

< Prompt photons in proton—proton collisions
= Beautiful test of perturbative QCD in hadronic collisions

< Prompt photons in proton—nucleus collisions

= A promising probe of nuclear parton densities

< Prompt photons in heavy—ion collisions

= Seems quite insensitive of medium effects (despite many opposite
suggestions)

= Might be used as a counter of binary nucleon—nucleon collisions

= Interesting correlation measurements to study jet quenching

Muchas gracias !



