Aspects of photon production in heavy-ion collisions

François Arleo (LLR Palaiseau, France)

Lectures

Lecture #1 (today)

Prompt photon production, from pp to AA collisions

Lecture #2 (Sun. 15, 12:30pm)

Quark-gluon plasma radiation: thermal photon production

Outline

- Definition
- Perturbative QCD framework
- Prompt photon production in pp collisions
- Prompt photons in nuclear collisions

What prompt photons?

A definition

Prompt photons are produced by the hard scattering of two incoming nucleons [hard = w/ large momentum transfer Q $\gg \Lambda_{QCD}$]

Prompt photons carry large $p_T \gg \Lambda_{QCD} = O(1 \text{ GeV})$

Physical consequence

Asymptotic freedom (Nobel Prize 2004) allows for a perturbative treatment

$$\alpha_s(Q \gg \Lambda_{\rm QCD}) \ll 1$$

Lecture by A. Kovner

Why bothering about photons?

- Genuine test of perturbative QCD through a careful comparison between high-precision data and fixed order (NLO) or resummed (NLL) calculations
- Interesting constraints on non-perturbative quantities such as parton distribution functions in a proton (or nucleus)
- Allow for a systematic comparison between different systems to probe nuclear effects in p—A and A—A collisions
- Crucial reference process for other hard probes (e.g. jets)
- Important QCD background for (B)SM physics, such as Higgs decay

pQCD calculations in a nutshell

Factorization

Cross section = non-perturbative x perturbative physics

- Factorization theorem used as a (solid) working assumption
- Non-perturbative parton distribution functions
 - Fitted to DIS and pp data
 - Evolution given by perturbative QCD (DGLAP)
- Perturbative QCD amplitudes
 - Computed using Feynman diagram techniques

Leading-order contributions $O(\alpha \alpha_s)$

Compton scattering

$$qg \rightarrow q\gamma$$

Annihilation process

$$q\bar{q} \to g\gamma$$

At high energy, only the Compton scattering process is relevant

Leading-order contributions $O(\alpha \alpha_s)$

Compton scattering

$$qg \rightarrow q\gamma$$

Annihilation process

$$q\bar{q} \to g\gamma$$

At high energy, only the Compton scattering process is relevant

What about higher-order corrections?

A next-to-leading order contribution $O(\alpha \alpha_s^2)$

The collinear divergence of this diagram is absorbed into new nonperturbative objects :

quark/gluon fragmentation into a (collinear) photon

A next-to-leading order contribution $O(\alpha \alpha_s^2)$

The collinear divergence of this diagram is absorbed into new nonperturbative objects :

quark/gluon fragmentation into a (collinear) photon

- * The q \rightarrow q γ splitting process yields large terms prop. to $ln(Q/\Lambda_{QCD})$ making fragmentation functions into photons to be $O(\alpha/\alpha_s)$
- * The left diagram actually is $O(\alpha_s^2) D\gamma/k = O(\alpha \alpha_s) = LO!$

Direct vs. fragmentation

Arbitrary distinction between direct and fragmentation at NLO

Only the sum:

direct + fragmentation

is meaningful and does not depend on the arbitrary fragmentation scale (or ar least hopefully not much)

Ingredients

At LO accuracy

$$\frac{\mathrm{d}\sigma^{\mathrm{dir}}}{\mathrm{d}\mathbf{p}_{\perp}\mathrm{d}\eta} = \sum_{i,j=q,\bar{q},g} \int \mathrm{d}x_1 \; \mathrm{d}x_2 \; f_{i/p}(x_1,M) \; f_{j/p}(x_2,M) \; \frac{\alpha_s(\mu)}{2\pi} \; \frac{\mathrm{d}\widehat{\sigma}_{ij}}{\mathrm{d}\mathbf{p}_{\perp}\mathrm{d}\eta}$$

$$egin{array}{lll} rac{\mathrm{d}\sigma^{\mathrm{frag}}}{\mathrm{d}\mathbf{p}_{\perp}\mathrm{d}\eta} &=& \sum_{i,j,k=q,ar{q},g} \int \mathrm{d}x_1 \; \mathrm{d}x_2 \; f_{i/p}(x_1,M) \; f_{j/p}(x_2,M) \; rac{dz}{z^2} \ & imes & \left(rac{lpha_s(\mu)}{2\pi}
ight)^2 \; rac{\mathrm{d}\widehat{\sigma}^k_{ij}}{\mathrm{d}\mathbf{p}_{\perp}\,\mathrm{d}\eta} \; D_{\gamma/k}(z,M_F) \end{array}$$

- ❖ f_{i/p}: parton distribution functions (e.g. MSTW, CT10, NNPDF)
- $D_{v/k}(z, M_F)$: fragmentation functions into photons (e.g. BFG)
- $* \sigma_{ij}$ and σ_{ij}^{k} : LO (NLO) partonic cross sections

Scales

Diagrammatic calculation depends on the 3 unphysical scales

- Renormalization scale μ
 - acts on the (running of the) strong coupling constant α_s
 - due to UV divergence
- Factorization scale M
 - acts on the parton distribution functions f_{i/p}
 - due to initial-state collinear singularities
- Fragmentation scale M_F
 - acts on the fragmentation functions D_{y/k}
 - due to final-state collinear singularities

Scales

Diagrammatic calculation depends on the 3 unphysical scales

- Renormalization scale μ
- Factorization scale M
- Fragmentation scale M_F

Scale variation at a given order allows

unknown higher-order corrections to be estimated

Usually one takes

$$1/4 - 1/2 Q \lesssim \mu \sim M \sim M_F \lesssim 2 - 4 Q \qquad Q = \mathcal{O}(p_{\perp})$$

(Note: no scale variation in an all-order calculation!)

Prompt photons in pp collisions

Uncertainties (1/3)

Parton distribution functions
 very well constrained (~ 5-10%)
 except at very small or large x

[CT10 coll, 1302.6246]

Uncertainties (2/3)

Fragmentation functions poorly constrained by data

[OPAL coll, hep-ex/9708020]

[Bourhis Fontannaz Guillet, hep-ph/9704447]

Uncertainties (2/3)

- Fragmentation functions poorly constrained by data
- Could be accessible through photon—jet measurements

$$z_{\gamma} = -\frac{\vec{p}_T^{\gamma} \cdot \vec{p}_T^{\text{jet}}}{\|\vec{p}_T^{\text{jet}}\|^2}$$

[Belghobsi, Fontannaz, Guillet, Heinrich, Pilon, Werlen 0903.4834]

Scale dependence (3/3)

- Important at leading order
- Rather moderate (few tens of percent) at NLO

p-p collisions at RHIC

 $\sqrt{s} = 200 \text{ GeV}$

[FA, hep-ph/0601075]

World data

Impressive measurements from fixed-target (WA70, WA98,...) to collider (ISR, RHIC, Tevatron, LHC) experiments

Isolation

Recall that direct and fragmentation components are arbitrary

What is observable and NOT arbitrary are

inclusive and isolated photons

- Inclusive: no selection on the final-state
- * Isolated: only select γ with low hadronic activity around it
 - depends on isolation criteria, e.g.

$$E_T^{had} \le E_T^{max}$$

for particles in a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Isolation

Recall that direct and fragmentation components are arbitrary

What is observable and NOT arbitrary are

inclusive and isolated photons

- Inclusive: no selection on the final-state
- Solated: only select γ with low hadronic activity around it

Experimentally

- Inclusive production measured essentially at fixed-target experiments and RHIC
- Isolated measurements at RHIC, Tevatron, and LHC

Pros and cons

Pros

- * Strongly suppress the contribution from hadron (π^0, η) decays
- Reduce the sensitivity on the fragmentation functions

Cons

- Needs a reliable theoretical description of multiple emission processes
 - Sensitive to underlying events
 - Beyond the fixed-order calculations
 - Interesting developments of Monte Carlo showers matched with NLO calculations (POWHEG)

Isolated data vs. theory

Very good description of isolated photon world-data, from fixed target experiments to Tevatron...

Isolated data vs. theory

Very good description of isolated photon world-data, from fixed target experiments to Tevatron... up to the LHC

Prompt photons in nuclear collisions

Prompt photon in heavy ion collisions

First of all

no real predictivity of pQCD in heavy ion collisions!

- On not allow one to quantify properly theoretical uncertainties
 - can't be as quantitative as pp phenomenology
- Rather exploratory
 - lots of activity and new ideas... fun!

Prompt photon in heavy ion collisions

First of all

no real predictivity of pQCD in heavy ion collisions!

- ... but potentially very useful!
- Probe of nuclear parton distribution functions
- A good (?) reference for hard processes sensitive to hot medium effects
- Photon jet correlations help to constrain parton energy loss in the medium

Lecture II by S. Peigné

Nuclear PDF

- Structure functions F₂ are modified in nuclei
 - First observed by the EMC experiment (DIS on nuclei)
 - Depends on x and Q²

$$R_{F_2} \equiv \frac{F_2^A(x, Q^2)}{A \times F_2^p(x, Q^2)}$$

[NMC, hep-ph/9503291]

Extracting nuclear PDF (nPDF)

- Global fit analyses carried out to extract nuclear parton densities
 - EKS98, HKN04, nDS, EPS09, DSSZ...
 - Use mostly DIS & Drell-Yan data (but not photons)
 - Large uncertainties at small x where (almost) no data is available yet

$$R_g \equiv \frac{G^{p/A}(x, Q^2)}{G^p(x, Q^2)}$$

[C. Salgado et al, 1105.3919]

Probing nuclear PDF at LHC

- Jets
 - Probes quark and gluon densities
 - High rates
 - Rich phenomenology
 - Large scales Q² > 10³ GeV²
- Weak bosons and Drell-Yan
 - Probe quark densities
 - Large scales Q² > 10⁴ GeV²
- Prompt photons
 - Probes quark and gluon densities
 - Rich phenomenology
 - Low $Q^2 > 10-10^3 \text{ GeV}^2$

Lectures by E. lancu

Probing nuclear PDF in pA collisions

Simple relationship between R_{DA} and nuclear PDF

$$R_{pA}(p_{\perp},y) = \frac{d^3\sigma}{dy\ d^2p_{\perp}}(p+A\to\gamma+X)$$

$$/\frac{A\ d^3\sigma}{dy\ d^2p_{\perp}}(p+p\to\gamma+X)$$
1.2

$$R_{pA} \simeq R_G \left(2p_{\perp} / \sqrt{s} \times \exp(-y) \right)$$

At backward rapidity

$$R_{pA} \simeq R_{F_2} \left(2p_{\perp} / \sqrt{s} \times \exp(-y) \right)$$

[FA, Gousset, 0707.2944]

Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon–nucleon binary scaling in heavy-ion collisions

In A–A collisions, one assumes that in absence of nuclear effects

$$dN_{AB}(b) = N_{AB}^{coll}(b) \times dN_{pp}$$

However

- Assumption which needs to be checked using processes insensitive to medium effects
- The number of collisions not well determined (Glauber model)

Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon–nucleon binary scaling in heavy-ion collisions

PHENIX

 $\sqrt{s_{NN}} = 200 \text{ GeV}$

Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon–nucleon binary

scaling in heavy-ion collisions

CMS

 $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon–nucleon binary scaling in heavy-ion collisions

Does this mean that prompt photons

are insensitive to medium effects?

Prompt photons as « standard candle »

Prompt photons allow for checking the nucleon–nucleon binary scaling in heavy-ion collisions

Does this mean that prompt photons

are insensitive to medium effects?

Bueno, no es muy claro...

A variety of (sometimes contradictory) processes have been discussed...

Hot medium effects

Enhancement of isolated photons in A A collisions from jet – photon conversion

[Fries Müller Srivastava nucl-th/0208001, Turbide Gale Jeon Moore hep-ph/0502248]

[Qin Ruppert Gale Jeon Moore 0906.3280]

Hot medium effects

Quarks and gluons propagating through quark-gluon plasma lose energy by radiating gluons... and possibly photons too

[Zakharov hep-ph/0405101]

[Vitev Zhang 0804.3805]

Hot medium effects

Quarks and gluons propagating through quark-gluon plasma lose energy by radiating gluons... or does it quench fragmentation photons?

[Jalilian-Marian Orginos Sarcevic hep-ph/0101041 FA hep-ph/0601075

Jet quenching is one of the most spectacular result from heavy-ion collisions at RHIC and LHC

Jet quenching is one of the most spectacular result from heavy-ion collisions at RHIC and LHC

- Parton energy loss is likely responsible for this
- However it is rather difficult to estimate the amount of energy lost by the propagating partons from single-hadron spectra

Jet quenching is one of the most spectacular result from heavy-ion collisions at RHIC and LHC

- Parton energy loss is likely responsible for this
- However it is rather difficult to estimate the amount of energy lost by the propagating partons from single-hadron spectra

Need to go beyond single hadron production to better understand medium modifications of fragmentation processes

Photon – jet and photon – hadron momentum correlations

Jet quenching is one of the most spectacular result from heavy-ion collisions at RHIC and LHC

- Parton energy loss is likely responsible for this
- However it is rather difficult to estimate the amount of energy lost by the propagating partons from single-hadron spectra

Idea

Use the photon momentum as a proxy for that of the parton (jet)

Photon – jet in heavy-ion collisions

Significant asymmetry reported!

[CMS, 1205.0206]

Photon – jet in heavy-ion collisions

- Significant asymmetry reported!
- ... but still a lot to be performed before extracting parton energy loss in the medium

Summary

- Prompt photons in proton—proton collisions
 - Beautiful test of perturbative QCD in hadronic collisions
- Prompt photons in proton—nucleus collisions
 - A promising probe of nuclear parton densities
- Prompt photons in heavy—ion collisions
 - Seems quite insensitive of medium effects (despite many opposite suggestions)
 - Might be used as a counter of binary nucleon—nucleon collisions
 - Interesting correlation measurements to study jet quenching

Summary

- Prompt photons in proton—proton collisions
 - Beautiful test of perturbative QCD in hadronic collisions
- Prompt photons in proton-nucleus collisions
 - A promising probe of nuclear parton densities
- Prompt photons in heavy—ion collisions
 - Seems quite insensitive of medium effects (despite many opposite suggestions)
 - Might be used as a counter of binary nucleon—nucleon collisions
 - Interesting correlation measurements to study jet quenching

Muchas gracías!