

Based on a talk given at the ECFA Aix les Bains workshop on HL-LHC, 1st October 2013
On behalf of the ATLAS & CMS collaborations

The HL-LHC landscape

•SM Higgs boson couplings

ILC

Future Colliders

- High-luminosity LHC
- ILC
- TLEP
- HE-LHC
- VLHC

Facility	HL-LHC	ILC	ILC(LumiUp)	CLIC	TLEP (4 IPs)	HE-LHC	VLHC
$\sqrt{s} \; (\mathrm{GeV})$	14,000	250/500/1000	250/500/1000	350/1400/3000	240/350	33,000	100,000
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	3000/expt	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600	3000	3000
$\int dt \ (10^7 s)$	6	3+3+3	(ILC 3+3+3) + 3+3+3	3.1+4+3.3	5+5	6	6

- Electron colliders offer clean environment but reduced rate
 - Complimentary to LHC programme?

HL-LHC Benchmark Scenario

- Approved running to deliver 300 fb⁻¹ by ~2021
 - With 20x Higgs boson production so far
- Post LS3 operation at 5x10³⁴cm⁻²s⁻¹ (lumi leveling)
 - 25 ns bunch spacing (deign, c/f 50ns so far)
 - 140 events per bunch crossing (c/f 20 in 2012)
 - 3000 fb⁻¹ over 10 years
- Detector upgrades needed
 - Detectors deigned for 10 years only
 - Need to cope with radiation damage and pileup
 - Aim to maintain or enhance physics performance
- Trigger is a key component:
 - Thresholds not too dissimilar to today
 - Mandated by need to study the Higgs boson

Event complexity

ATLAS & CMS were designed for mean 23 events

per bunch-crossing

And continue to do an excellent job with 35

Or even 78

But they will not handle
 140 events of pileup

Npv

W.Murray 4

 $\sigma(E_{x,y}^{miss})$ [GeV]

What have we learned?

- The experiments are working remarkably
 - Operations, detector performance and simulation
- The SM is in great shape
 - N(N)LO calculations match data very well

φ, ψ, Ψ, W, Z, top, all well-behaved

HL-LHC Physics goals

- HL-LHC will be alone exploring multi-TeV
 - There will be a wide physics programme
 - I report on some of the Higgs boson studies
- Higgs Sector
 - Couplings
 - Rare decays
 - CP studies
 - BSM Higgs boson searches
 - Higgs boson pair production

Higgs bosons: 14 TeV, 3ab⁻¹

- 100M Higgs
 - c/f 2M TLEP
- 20K H→ZZ→IIII
- 400Κ γγ
- 50 H \rightarrow J/ $\psi\gamma$

Over 1M in all major production modes

Trigger upgrades

- No physics can be done if the data are not recorded
- Plot contrasts current and Phase 1 CMS trigger eff.
- Physics with 5x10³⁴cm⁻²s⁻¹ will need an effective trigger

Tools used for study here

- ATLAS derived detector response functions from full Geant4 simulation under two conditions:
 - $<\mu>\sim50$ assumed for 300fb^{-1}
 - Includes IBL and LAr trigger upgrades
 - $<\mu>\sim 140$ assumed for 3000fb^{-1}
 - Full ITK inside ATLAS
 - Also studies of pileup variation on calorimetry.
 - Largely validate ES extrapolations
 - Photons slightly worse, MET and b-tag improved
- CMS
 - Studies scale current analyses
 - Assume detector upgrades keep current performance
 - Augmented with full-simulation studies

Full G4 studies

- CMS muon momentum in fullsim compared with Delphes parametrization used here
- ATLAS muon p_T resolution in ITK and current ID compared
 - Important gains at low p_→
- Both detectors use more pessimistic performance for current studies

W.Murray

More G4 studies

- ATLAS E_T^{miss} resolution with parametrization overlayed
- ATLAS b-tag fake rate for 70% efficiency compared with rate assumed for ES studies
 - ITK brings enhanced tracking
 - Mistag below 0.5% for $<\mu>=140 p_{-}=100 GeV$

W.Murray 1

Higgs results so far

- Sensitivity of 'big 5' differs only by about a factor 3
- There is a rich programme

$H \rightarrow ZZ$

- High purity signal possible
- Separate into all 5 production modes
- WH, ZH use lepton

Selected signal event rates

	ttH	ZH	WH	VBF	ggH	
3000fb ⁻¹	35	5.7	67	97	3800	

ttH, H→ZZ Only possible at HL-LHC

$H \rightarrow \gamma \gamma$

- Yield of 0-jet scales well with σxL
- But VBF signal rate is only 10x current
 - Is tracker optimal?

Selected signal event rates

	0 jet	1 jet	2 jet
3000fb ⁻¹	490,000	12000	210

ttH, WH and ZH from ES study

ATL-PHYS-PUB-2012-001

H→WW

- ATLAS has done studies with re-weighting 8TeV
 - Applying the HL-LHC performance smearings
 - Jet p_T 30/35 GeV (300/3000fb)

Rutherford Appleton Laboratory

- Backgrounds from tt,WW rise with event pileup
 - But s/b is good enough to exploit increased rate

W.Murray 16

H→WW

The event yields in the WW mode are large Selected signal event rates

The systematic errors are therefore critical

3000fb ⁻¹	0 jet	1 jet	2 jet
ATLAS	42,000	22000	590

And under study

The bottom right table shows the estimated error on the background processes in current estimate

and the published

results

Error, %	14 TeV	8TeV		
WW	1.5	5		
VV	2	15		
top	7	12		
Z+jets	10	15		
W+jets	20	30		

$H \rightarrow Z\gamma$

- Tests loop structure
 - Related to H→yy
- S/b marginal
- But so was H→γγ

	ееү	μμγ	eeγ VBF	μμγ VBF
3000fb ⁻¹	1500	1700	21	23

$H\rightarrow \mu\mu$

3000fb⁻¹ at 14TeV offers new possibilities

$H \rightarrow \mu\mu$

- Allows direct study of coupling to two different leptons
- Test lepton flavour-universality carefully

ttH, H→yy

3000fb⁻¹ at 14TeV offers new possibilities

ATL-PHYS-PUB-2013-007

- ttH,H → yy
 - Sensitive to top in both production and decay
 - Yields top Yukawa coupling

Higgs strength: µ

		Н→γγ	H→WW	H→ZZ	H→bb	Н→тт	H→Zγ	H→µµ
300fb ⁻¹	ATLAS	[9,14]	[8,13]	[6,12]	N/a	[16,22]	[145,147]	[38,39]
	CMS	[6,12]	[6,11]	[7,11]	[11,14]	[8,14]	[62,62]	[40,42]
3000fb ⁻¹	ATLAS	[4,10]	[5,9]	[4,10]	N/a	[12,19]	[54,57]	[12,15]
	CMS	[4,8]	[4,7]	[4,7]	[5,7]	[5,8]	[20,24]	[14,20]

- The ranges [x,y] above are not directly comparable
- ATLAS compares two results
 - Systematic errors as estimated today
 - Experimental control region statistics rise helps a lot
 - With no theory systematic uncertainties
- CMS
 - Systematic errors as today
 - Scale systematic errors: 1/√L (exp.) & 1/2 (theo.)

Signal strength: details

- Total µ is only part of story
- Separation
 of
 production
 modes is
 also vital

$\Delta\mu/\mu$	3	800 fb ⁻¹	3	000 fb ⁻¹
	All unc.	No theory unc.	All unc.	No theory unc.
$H \to \mu\mu \text{ (comb.)}$	0.39	0.38	0.15	0.12
(incl.)	0.47	0.45	0.19	0.15
(ttH-like)	0.73	0.72	0.26	0.23
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.22	0.16	0.19	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.12	0.06	0.10	0.04
(VH-like)	0.32	0.31	0.13	0.12
(ttH-like)	0.46	0.44	0.20	0.16
(VBF-like)	0.34	0.31	0.21	0.16
(ggF-like)	0.13	0.06	0.12	0.04
$H \rightarrow WW \text{ (comb.)}$	0.13	0.08	0.09	0.05
(VBF-like)	0.21	0.20	0.12	0.09
(+1j)	0.36	0.17	0.33	0.10
(+0j)	0.20	0.08	0.19	0.05
$H \rightarrow Z\gamma$ (incl.)	1.47	1.45	0.57	0.54
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.14	0.09	0.10	0.04
(VH-like)	0.77	0.77	0.26	0.25
(ttH-like)	0.55	0.54	0.21	0.17
(VBF-like)	0.47	0.43	0.21	0.15
(+1j)	0.37	0.14	0.37	0.05
(+0j)	0.22	0.12	0.20	0.05

Overview of 3000fb⁻¹ precision

15 distinct modes expected to be measurable (back in 2009 we expected 7!)

Extraction of couplings

Extracting Higgs couplings from the σxBR requires assumptions at LHC

$$\sigma \cdot B \left(i \to H \to f \right) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- As Γ_H is not measurable, assume it is sum of SM channel widths
 - Total width controlled by H→bb
 - cc is a 5% unmeasured contribution
 - Assumed to scale with bb
 - For ATLAS bb/cc scale with ττ
 - Assume no new invisible/undetectable modes
- Production/decay to particle a scales as κ_a^2 .

Coupling fit results

		\mathbf{K}_{γ}	\mathbf{K}_{W}	K _Z	K _g	K _b	\mathbf{K}_{t}	\mathbf{K}_{τ}	$\mathbf{K}_{\mathrm{Z}\gamma}$	\mathbf{K}_{μ}
300fb ⁻¹	ATLAS	[8,13]	[6,8]	[7,8]	[8,11]	N/a	[20,22]	[13,18]	[78,79]	[21,23]
	CMS	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000fb ⁻¹	ATLAS	[5,9]	[4,6]	[4,6]	[5,7]	N/a	[8,10]	[10,15]	[29,30]	[8,11]
	CMS	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]

- Fits assumes no new undetectable modes
- The upper ranges are directly comparable
- Sensitivity is a factor 2 apart
 - ATLAS fit lacks bb mode; uses ττ to fix fermions
- Next: look at ratios of couplings for more stability

Coupling ratio fits

		$K_{\mathrm{g}}K_{\mathrm{Z/}}$ K_{H}	K _W /	K_{γ}/K_{Z}	K _g /K _Z	K_b/K_Z	K_{τ}/K_{Z}	K_{μ}/K_{Z}	$\kappa_{Z\gamma}K_{Z}$	K_t/K_g
300fb ⁻¹	ATLAS	[3,6]	[4,5]	[5,11]	[11,12]	N/a	[11,13]	[20,22]	[78,78]	[17,18]
	CMS	[4,6]	[4,7]	[5,8]	[6,9]	[8,11]	[6,9]	[22,23]	[40,42]	[13,14]
3000fb ⁻¹	ATLAS	[2,5]	[2,3]	[2,7]	[5,6]	N/a	[7,10]	[6,9]	[29,30]	[6,7]
	CMS	[2,5]	[2,3]	[2,5]	[3,5]	[3,5]	[2,4]	[7,8]	[12,12]	[6,8]

- Generally good agreement between the two estimates
- HL-LHC offers roughly a factor 2-3 improvement in coupling ratio determinations.
 - Especially if theory errors can be reduced.

Coupling expectations

Invisible Higgs search

- ATLAS has studied ZH→II+XX
- Sensitive to invisible Br about 10% with 3 ab⁻¹
- E_T^{miss} control vital

	300fb-1	3000fb ⁻¹
ATLAS	[22,31]	[8,17]

W.Murray 28

WARWICK

Direcct Higgs width study

Dixon and Li arXiv:1305.3854

- CMS extract Γ_H<6.9GeV from width of γγ
 - But $\Gamma_{H}^{SM}=4.2 \text{MeV}$
- Interference exists between signal and bkd
 - Shifts the apparent peak position

Could compare yy and ZZ peak: systematics :(

Higgs width in yy

- Interference depends on s/b & hence p_T
- Compare H→yy divided at p₊=30GeV

- Comparing peak positions gives sensitivity:
 - Γ_H<920MeV from 300fb⁻¹, 200MeV from 3ab⁻¹
- Systematic errors not dominating

HZZ coupling structure

- Analyze decay angles of ZZ system
- Express CP-odd(CP-even) structure as g₄(g₂)
- Big sensitivity gains from HL-LHC

2HDM sensitivity

- 2HDM's have extra doublet (H,A,H⁺,H⁻)
- Coupling patterns Type I to IV are studied
 - Type II includes MSSM
- Studies of neutral sector sensitive to the mixing, tanβ and m_A.
 - H/A decays have tt threshold
- Example search for H to ZZ
 - Discovery potential m_H<2m_t for type II.

2HDM II: direct v couplings

- Both experiments study A→Zh search and coupling analysis of same model
- Two approaches complementary

Rutherford Appleton Laboratory

Couplings independent of m_A

Can we see the BEH field?

- The observation of a field filling space with weak charge and energy density poses questions about its gravitational impact
- We have seen the decay to ZZ, where the weak charge of the Higgs is absorbed by the vacuum
- But we need to demonstrate the potential
 - i.e. measure the self-coupling

Higgs boson pair-production

- Needs observation of Higgs pairs
 - Expected σ_{HH} =40±3fb \rightarrow 120K events
 - Finding one was tough with ~500K events
- But it is not enough

Rutherford Appleton Laboratory

- Both the above diagrams (and more) contribute
- Negative interference :(
- Ongoing studies suggest some sensitivity
 - Low rate makes high demands on detectors & lumi
 - Theoretical studies suggest possible: 1309.6318

New ideas

- Expect improvements to the programme
- Experimentally many analysis improvements will be made in 15 years
- New theoretical ideas too. e.g.
 - ArXiv:1306.5770v1
 - Possible Hcc vertex
 - ArXiv:1305.3854
 - Width through interference

- The programme will be richer than we see
 - Thanks to huge Higgs sample + work

Putting it all together

- The Higgs coupling strength plot
 - Is this the 'blueband' plot for the next 15 years?

Summary

- 30 fb⁻¹ of LHC data allowed the Higgs discovery
- 300fb⁻¹ at 14 TeV allows many measurements
- 3000fb⁻¹ allows much more:
 - Precision Higgs couplings to 8 particles
 - Coupling structure
 - Higgs invisible width
 - Discovery potential for heavier Higgs bosons
 - Some sensitivity to self coupling
- The physics possible at a hadron collider grows with experience
 - We will surely exceed this programme

Backup

THE UNIVERSITY OF

WARWICK

2HDM: H→ZZ

 $\cos(\beta - \alpha)$

2HDM: A→Zh study

Full list: graphically

- This shows the Higgssignal strength in many analysis channels
 - Nb ggF like shows
 TOTAL Higgs strength
 accepted in analysis, not
 the VBF strength
 - Needs coupling fit
- Strong anti-correlation between 0j/1j strengths is exploited in fit

 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

ATL-PHYS-PUB-2013-014

H →ZZ: η acceptance

- Contrast
 CMS
 detector with
 |η|<2.5 with
 |η|<4
 extension
- Acceptance increases 40%
- Worth full study

Jet thresholds

- Several ATLAS analyses use set of jet thresholds designed to give 1% pileup fake rate
 - ZZ, yy, Zy
 - These are calorimeter jets
 - Validated by tracks from PV
 - When available
- Inside |η|<2.1 tracks are available
- For η~4 a 50 GeV p_T jet
 has E=1.4TeV: rare

This impacts their physics

t→cH sensitivity

- t→cH can be O(10⁻³) in 2HDM-III models, 10x allowed t→cZ rate.
- tt→WbHc is studied with H→yy
- Look for yyj peak
- Combine W → Iv and W → qq
- Sensitivity to Br of 1.5x10⁻⁴
- Other decay modes only add.

