Data storage at CERN

Overview:

- Some CERN / HEP specifics
 - Where does the data come from, what happens to it
- General-purpose data storage @ CERN
- Outlook

CERN vs Experiments

- CERN = (Conseil* Européen* pour la Recherche Nucléaire*) →
 European Organization for Nuclear Research
 - Est.1954, international treaty, 21 states
 - Provides lab facilities: water, electricity, cooling, offices, network, computing, various flavours of particle beams,..
 - ~2300 staff clerical, engineers, firemen, ...
- Experiments: international scientific collaborations, own funding
 - "HEP": high-energy physics
 - Build & install detectors
 - Use lab facilities ("MoU")
 - Computing: yearly review
 - Generate & use & manage data
 - 10...3000 physicists each
- WLCG: computing grid for LHC

"Data taking" in HEP

- Think "digital video camera"...
 - Unwieldy & complicated & expensive

"Data taking"

.. but gives 4d "pictures"

Significant postprocessing required: calibration, track reconstruction

- .. and subsequent analysis
- Result: good statistics on very rare events ≈
 scientific papers.

Tier 0 at CERN: Acquisition, First pass reconstruction, Storage & Distribution

Some history of scale...

Date	Collaboration sizes	Data volume, archive technology
Late 1950's	2-3	Kilobits, notebooks
1960's	10-15	kB, punchcards
1970's	~35	MB, tape
1980's	~100	GB, tape, disk
1990's	700-800	TB, tape, disk
2010's	~3000	PB, tape, disk

For comparison:

1990's: Total LEP data set ~few TB

Would fit on 1 tape today

Today: 1 year of LHC data ~25 PB

HEP data flow - schematic

HEP data flow - realistic

Physics data - CERN IT part

- Physics Storage systems in CERN-IT:
 - CASTOR: HSM
 - EOS: diskonly low-latency access, recent
- Both:
 - Homegrown
 - [Non|HEP]-standard protocols (XrootD, RFIO, SRM, gridftp)

CASTOR HSM

- Born in 1999
- Common Namespace
- Main Role: data recording,
 Tier-1 data export, production activities
- Mainly tape-backed data
- Focus on tape performance (latency can be high)
- Database centric
- Not optimized for concurrent access:
 - Currently Raid-1 configuration
- Aimed at DAQ activities: limited transfer slots = QoS
- No (real) quotas...

CASTOR: current setup

- 7 instances:
 - LHCs: ATLAS, ALICE, CMS and LHCb
 - PUBLIC: users, non-LHC experiments and specific pool for DAQ activities for AMS, COMPASS, NA61, NA62
 - Repack (tape media migration and compacting) and PPS (pre-production)
- Totals:
 - 92PB, 316M files, ~650 diskservers
- Mature release cycle:
 - ~1 major release per year
- In production also at RAL and ASGC

CASTOR historical data

18,000
16,000
14,000
10,000
8,000
4,000
2,000
Wed Jan 1 Wed Jan 15 Wed Jan 29 Wed Feb 12 Wed Feb 26 Wed Mar 12
Time

Tape "cold" data verification

Repacking tapes is major activity

EOS

- Born in 2010
- in-memory namespace split per instance
- Main role: end-user analysis
- Disk-only storage
- Focus on low latency
- Optimized for concurrency
- Multi-replica on different diskservers
- No limit on transfer slots throttle via overload
- Quota system: users&groups (for volume and files)
- Strong authentication: krb5, X509
- Diskserver: JBOD configuration

EOS: current setup

- 6 instances:
 - LHCs: ATLAS, ALICE, CMS and LHCb
 - PUBLIC: recently deployed AMS and COMPASS experiments
- Totals:
 - 20PB, 158M files, ~1100 diskservers
- Release lifecycle driven by functionality
 - ~2 major release per year, constant updates

Used at Fermilab (Tier-3 functionality)

Disk Space Installed (PB)

EOS deployment

other data storage services

(Data storage – everywhere at CERN...)

- Experiments:
 - ex. DAQ 'disk buffers' up to several days of data taking
 - Often: prototype solution, but trouble with running long-term
- Department & group-scale independent solutions
 - CERN IT services ought to cover these..
 - .. but not always do.
 - ("NIH"-syndrome?)
- (Structured data / databases not considered here)

Here: looking at CERN IT(-DSS) services.

General-Purpose storages

- General-purpose shared filesystems
 - Home directories = Untrusted clients = strong authentication
 - AFS Linux/Mac (see CERN site report), 950TB, 3G files
 - DFS Windows-only
 - Future: (NFSv4), (FUSE-mounted EOS), (local FS+OwnCloud)
- "cluster filesystems"
 - Typically: weak authentication
 - Not used for "computing" at CERN
 - general problem: "open" network + (too) many machines
 - CERN computing is "embarrassingly parallel"
 - CERN computing is worldwide
 - (experiments have own networks)
 - NetApp Filers: NFSv3 (190TB, 210M files)
 - Re-export: CVMFS, higher-level services (TWiki, VCs, ..), DB
 - "standard", "will not void warranties"

- Archive/tape
 - **TSM** (9PB, 2.1G files)
 - (See CERN AFS Backup talk)
 - Most machines are not backed up
 - (CASTOR)
 - (EOS reed-solomon)

- Block storage: CEPH
- R&D: Hadoop/HDFS, Huawei S3, SWIFT, ...
- lots of auxiliary storage services
 - protocol gateways (SRM, gridftp, http/webdav,..)
 - File transfer engines (FTS), OwnCloud
 - Bookkeeping, accounting, monitoring,...

Looks like a zoo?

- Yes. But: different Dimensions:
 - Usage
 - Size/#Files
 - I/O pattern
 - Layering
 - Lifecycle (eval/prototype/production/legacy)
- "tool for the job"-approach
 - (and a bit of history. And Co-Evolution at work..)
 - Historically, lots of "use cases" started on AFS...
 - .. and once "big enough", moved somewhere else. Mostly.

Size matters

Map new use cases to "our" toolbox

- Size, performance
- Acceptable limitations

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Our building blocks

- batchusserverus communalus
 - 32..64GB RAM; 2..3 HD; Intel or AMD; ScientificLinuxCERN
 - Used for (replicated) headnodes, metadata servers
 - + SATA tray(s) + 10GbE →
- discusserverus vulgaris
 - -24x 3TB + 3x2TB, 1x 10GbE,
 - used by EOS, CASTOR, AFS, CEPH, TSM, HDFS
 - \$\$\$/TBmonth varies by replication factor (+manpower)
- Build up higher-value services from more basic services:
 - OwnCloud = EOS+FUSE+HTTP or NetApp+HTTP
 - CVMFS = NetApp+HTTP
 - AFS backups = (TSM or CASTOR) + scripts
- Redo when needed

All is well?

- Problems / inefficiencies:
 - Manpower issues: training, split
 - But: No formal standby for any data service)
 - Overprovisioning, per-service safety margins
 - But: tend to split too-big services anyway into "instances"
 - "One size fits all" rarely does
 - c.f AFS servers are half-empty not enough cold data
 - idle CPU capacity on diskservers
 - Spare disks on other machines (CC has 107PB raw disk)
 - Allocation & procurement cycle is sloow
 - Formal tendering, anti-corruption safeguards, national interests ...

Current: Huge interest in CEPH

- Nice 'blocks' -fit at several layers
- Have 3PB 'prototype'
 - Used for OpenStack(VM images+volumes)

- Ogled by CASTOR, EOS, (AFS), (NFS)
 - To replace current talk-to-disk-and-handle-errors layer
- (see D. Van der Steer "Ceph storage for the cloud", http://indico.cern.ch/event/300076/)

Outlook

- 2nd computer center in Wigner Institute/Budapest
 - "LAN" access now means 23ms...
- Currently LHC is not running (LS1)
 - Restart for "run 2" early 2015 expect higher data rates (~2x) and different data flows
 - Other experiments will start earlier
 - Run 3: 75GB/s from ALICE?
- RAID works less and less (disk size vs reconstruction speed): forced to RAIN

Summary

- Some CERN data storage use cases are "special", some are not
- Toolbox / building block approach
- Common HW reduces cost
 - But manpower / know-how is an issue
- Nothing cast in stone
 - but some upheavals take a long time..